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Introduction by the Organisers

The workshop Singularity Theory took place from September 20 to 26, 2009, and
continued a long sequence of workshops Singularitäten that were organized regu-
larly at Oberwolfach. It was attended by 46 participants with broad geographic
representation. Funding from the Marie Curie Programme of EU provided com-
plementary support for young researchers and PhD students.

The schedule of the meeting comprised 23 lectures of one hour each, presenting
recent progress and interesting directions in singularity theory. Some of the talks
gave an overview of the state of the art, open problems and new efforts and results
in certain areas of the field. For example, B. Teissier reported about the Kyoto
meeting on ‘Resolution of Singularities’ and about recent developments in the
geometry of local uniformization. J. Schürmann presented the general picture
of various generalizations of classical characteristic classes and the existence of
functors connecting different geometrical levels. Strong applications of this for
hypersurfaces was provided by L. Maxim. M. Kazarian reported on his new results
and construction about the Thom polynomial of contact singularities; R. Rimányi
used Thom polynomial theory to provide invariants for matroid varieties (e.g.
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for line configurations in the plane) which answers some enumerative problems
and explains certain deformation properties. M. Saito gave an overview of recent
developments in the theory of jumping ideals and coefficients, spectra and b–
functions, which has recently created a lot of activity and produces several new
strong results. Sh. Ishii formulated several questions about the geometry of jet
schemes.

Several connections with symplectic geometry were established and emphasized:
N. A’Campo presented a new construction of ‘vanishing spine’ and (tête à tête)
monodromies; Y. Namikawa about universal Poisson deformations of symplectic
varieties; A. Takahashi spoke about the general program of homological mirror
symmetry and exemplified it in the case of cusp singularities; M. Garay about the
general KAM theorems.

Several talks targeted low–dimensional singularity theory: M. Borodzik’s talk
focused on the Tristam-Levine signature to understand the deformation of cuspidal
plane singularities; P. Cadman characterized the δ–constant stratum; W. Ebeling
presented the relation which connects the Poincaré series with the monodromy
characteristic polynomial for some surface singularities; W. Veys provided a possi-
ble generalization of the ‘Monodromy Conjecture’ for normal surface singularities.
J. F. de Bobadilla proved that the Nash Conjecture for normal surface singulari-
ties is topological (depends only on the resolution graph). The talk of I. Burban
answered some classification questions about the structure of Cohen-Macaulay
modules over non–isolated surface singularities.

The talks of C. Hertling, D. Mond and Ch. Sevenheck had their subject in the
supplementary structures associated with universal unfoldings and free divisors.
Mond provided several new constructions to produce free divisors. C. Sabbah
overview his theory on ‘Wild geometry’ (of non–regular systems and singularities).

The meeting was closed by the talk of D. Siersma about Betti–number bounds
of fibers of affine polynomial maps.

We think that the success of the meeting was also guaranteed by the fact that
the younger participants also had the opportunity to present their work. Addi-
tionally, there was plenty of time for discussions, numerous collaborations started
and continued.
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Abstracts

Spines and tête-à-tête monodromy

Norbert A’Campo

Introduction. Let (Σ,Γ) be a pair consisting of a a compact connected oriented
surface Σ with non empty boundary ∂Σ and a finite graph Γ that is embedded in
the interior of Σ. We assume that the surface Σ is a regular neihborhood of the
graph Γ and that the embedded graph has the tête-à-tête property. Moreover, we
will construct for each pair (Σ,Γ) with the tête-à-tête property a relative mapping
class TΓ on (Σ, ∂Σ). We call the mapping classes resulting from this construction
tête-à-tête twists. The main result of asserts:

Theorem. The geometric monodromy diffeomorphism of an isolated plane
curve singularity is a tête-à-tête twist.

Section 1. Tête-à-tête retractions to spines and tête-à-tête twists.
Let Γ be a finite connected and metric graph with e(Γ) edges and no vertices of
valency 1. We assume, that the metric dΓ on Γ is the path metric, that is given
by parametrizations Ee : [0, Le] −→ Γ, Le > 0, e = 1, · · · , e(Γ) of the edges. We
have dΓ(Ee(t), Ee(s)) = |t− s|, t, s ∈ [0, Le].

Let Σ be a smooth, connected and oriented surface with non empty boundary
∂Σ. We say, that a map π of Γ into Σ is smooth if π is continuous, injective,
π(Γ) ∩ ∂Σ = ∅, the compositions π ◦ Ee, e = 1, · · · , e(Γ), are smooth embeddings
of intervals and moreover, at each vertex v of Γ all outgoing speed vectors of
π ◦ Ee, v = Ee(0) or v = Ee(Le) are pairwise not proportional by a positive real
number.

A safe walk along Γ is a continuous injective path γ : [0, 2] −→ Σ with the follow-
ing properties: γ(t) ∈ Γ, t ∈ [0, 2]; the speed, measured with the parametrization
Ee at t ∈ [0, 2] equals ±1 if γ(t) is in the interior of an edge e; if the path γ runs
at t ∈ (0, 2) into the vertex v, the path γ makes the sharpest possible right turn,
i.e. the oriented angle at v = γ(t) ∈ Σ inbetween the speed vectors −γ̇(t−) and
γ̇(t+) is smallest possible.

It follows, that a safe walk γ is determined by its starting point γ(0) and its
starting speed vector γ̇(0). Futhermore, if the metric graph Γ ⊂ Σ is without
cycles of length less are equal 2, from each interior point of an edge two distinct
safe walks start.

If we think of the graph as streets with intersections on the surface, we can
imagine a safe walk as a walk staying always at the sidewalk of the street and
making only right turns. So, in New York, a safe walk goes around the block by
right turns only, and hence, in the same direction as the cars do. In Tokio, a safe
walk is even safer, since it goes in opposite direction to the car traffic.

Definition: Let (Σ,Γ) be the pair of a surface and regular embedded metric
graph. We say that the tête-à-tête property holds for the the pair if: the graph Γ
has no cycles of length ≤ 2; the graph Γ is a regular retract of the surface Σ; for
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each point p ∈ Γ, p not being a vertex, two distinct safe walks γ′p, γ
′′
p : [0, 2] −→ Σ

with p = γ′p(0) = γ′′p (0) exist and satisfy moreover γ′p(2) = γ′′p (2).
Again thinking of the graph as streets, the tête-à-tête property of Γ ⊂ Σ means,

that two pedestrians being vis-à-vis with respect to the street will be again vis-à-
vis after having done simultaneous safe walks over the distances of 2. It follows
that the underlying metric graph of a pair (Σ,Γ) with tête-à-tête property is the
union of its cycles of length 4.

We give basic examples of pairs (Σ,Γ) with tête-à-tête property: the surface
is the cylinder [−1, 1]× S1 and the graph Γ is the cycle {0} × S1 subdivided by
4 vertices in 4 edges of length 1. Here we think of {0} × S1 as a circle of length
4. The surface Σ1,1 is of genus 1 with one boundary component and the metric
graph Γ ⊂ Σ is the biparted complet graph K3,2 having edges of length 1. For
p, q ∈ N, p > 0, q > 0, the biparted complete graph Kp,q is the spine of a surface
Sg,r, g = 1/2(p− 1)(q− 1), r = (p, q), such that the tête-à-tête property holds. For
instance, let P and Q be two parallel lines in the plane and draw p points on P ,
q points on Q. We add pq edges and get a planar projection of the graph Kp,q.
The surface Sg,r is a regular thickening of the graph Kp,q, such that the given
projection of Kp,q into the plane extends to an immersion of Sg,r into the plane.
We give to all the edges of Kp,q length 1.

Let (Σ,Γ) a pair of a surface and graph with tête-à-tête property. Our purpose
is to construct for this pair a well defined element TΓ in the relative mapping class
group of the surface Σ. For each edge e of Γ we embed relatively a copy (Ie, ∂Ie)
of the interval [−1, 1] into (Σ, ∂Σ) such that all copies are pairwise disjoint and
such that each copy Ie intersects in its midpoint 0 ∈ Ie the graph Γ transversally
in one point which is the midpoint of the edge e. We call Ie the dual arc of the
edge e. Let Γe be the union of Γ∪ Ie. We consider Γe also as a metric graph. The
graph Γe has 2 terminal vertices a, b.

Let wa, wb : [−1, 2] −→ Γe be the only safe walks along Γe with wa(−1) =
a, wb(−1) = b. We displace by a small isotopy the walks wa, wb to smooth injective
paths w′

a, w
′
b, that keep the points wa(−1), wb(−1) and wa(2), wb(2) fixed, such

that w′
a(t) /∈ Γe for t ∈ (−1, 2). The walks wa, wb meet each other in the midpoint

of the edge e. Hence by the tête-à-tête property we have wa(2) = wb(2). Let we

be the juxtaposition of the pathes w′
a and −w′

b. We may assume that the path we

is smooth and intersects Γ transversally. Let I ′e the image of the path we. We now
claim that there exists up to relative isotopy a unique relative diffeomorphism φΓ
of Σ with φΓ(Ie) = I ′e. We define the tête-à-tête twist TΓ as the class of φΓ.

For our first basic example K2,2 ⊂ Σ1,2 we obtain back the classical right Dehn
twist. The second example K2,3 ⊂ Σ1,1 produces a tête-à-tête twist, which is
the geometric monodromy of the plane curve singularity x3 − y2. The twists of
the examples (Sg,r,Kp,q), p, q ≥ 2, compute the geometric monodromy for the
singularities xp − yq.

The family of Riemann surfaces Ft := {p ∈ C2 | x(p)3−y(p)2 = t, ||p|| ≤ R, t ∈
C, t 6= 0}, can be obtained as follows. Let Ht be the interior of the real convex
hull in C of {s ∈ C | s6 = t}. The surface F̄t := (C \Ht)∩DR′ has two boundary
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components, one component is a boundary with corners. Here we have denoted
by DR′ the disk of radious R′ in C. We subdivide the faces of that boundary by
its midpoint obtaining 12 vertices and pieces. The Riemann surface Ft is obtained
for some choice of R′ by gluing orientation reversing two by two the 12 pieces.
If, using the complex orientation of Ht, we enumerate the 12 vertices of Ht by
1, 2, · · ·12, the gluing is as follows. For i odd glue (cyclicly) the edge [i, i + 1] to
[i + 8, i + 7] and for i even glue the edge [i, i + 1] to [i + 7, i + 6]. We denote the
gluing by Nt and write: Ft = F̄t/Nt. If t runs over a circle |t| = r, 0 < r << R,
the hexagon Ht rotates by 2π

6 , hence the gluing scheme Nt is preserved. So, we
obtain a monodromy diffeomorphism φ : Ft −→ Ft.

Note that the gluing Nt converges in an appropriate microlocal topology, or
arc space topology, for t −→ 0 to the normalization of F0 = F̄0/N0, F̄0 := C.
Conversely, the surface F̄t can be obtained from (S1,1,K2,3) by cutting the surface
S1,1 along the graph K2,3.

A similar description holds also for the singularities xp − yq: replace Ht by the
convex hull of {s ∈ C | spq = t}, which is a polygon with pq faces. We get 2pq
vertices after midpoint subdivision. The gluing Nt is different. For the singularity
E8, given by x5 − y3, the gluing of the 30 pieces of ∂Ht is as follows. For i odd
glue (cyclicly) the edge [i, i+1] to [i+11, i+10] and for i even glue (cyclicly) the
edge [i, i+ 1] to [i + 20, i+ 19].

In his seminal work on the ramification of integrals depending upon parameters
Frédéric Pham has introduced the graphsKp,q as retracts of the local nearby fibers
of the singularities xp − yq [F ].

Section 2. Relative tête-à-tête retracts and graphs. We prepare ma-
terial, that will allow us to glue the previous examples. Let S be a connected
compact surface with boundary ∂S. The boundary ∂S = A∪B is decomposed as
a partition of boundary components of the surface S. We assume A 6= ∅, B 6= ∅.

Definition. A relative tête-à-tête graph (S,A,Γ) in (S,A) is an embedded
metric graph Γ in S with A ⊂ Γ. Moreover, the following properties hold: the
graph Γ has no cycles of length ≤ 2; the graph Γ is a regular retract of the surface
Σ; for each point p ∈ Γ \ A, p not being a vertex, the two distint safe walks
γ′p, γ

′′
p : [0, 2] −→ Σ with p = γ+p (0) = γ−p (0) satisfy to γ+p (2) = γ−p (2); for each

point p ∈ A, p not being a vertex, the only safe walk γp satisfies γp(2) ∈ A. The
map p ∈ A 7→ w(p) := γp(2) ∈ A is called the boundary walk. The pair (A,w) is
the boundary of the relative tête-à-tête graph (S,A,Γ).

We now give a family of examples of relative tête-à-tête graphs. Consider the
previous example (Sg,r,Kp,q), g = 1/2(p − 1)(q − 1), r = (p, q). We blow up in
the real oriented sense the p vertices of valency q, so we replace such a vertex
vi, 1 ≤ i ≤ p by a circle Ai and attach the edges of Kp,q that are incident with vi
to the circle in the cyclic order given by the embedding of Kp,q in Sg,r. We get a
surface Sg,r+p and its boundary is partitioned in A := ∪Ai and B = ∂Sg,r. The
new graph is the union of A with the strict transform of Kp,q. So the new graph
is in fact the total transform K ′

p,q. We think of this graph as a metric graph. The
metric will be such that all edges have positive length and that the tête-à-tête
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property remains for all points of K ′
p,q \ A. We achieve this by giving the edges

of A the length 2ǫ, ǫ > 0, ǫ small and by giving the edges of K ′
p,q \ A the length

1 − ǫ. The boundary walk is an interval exchange map from w : A −→ A. The
boundary walk preserves length. We denote by the triple (Sg,r+p, A,K

′
p,q) this

relative tête-à-tête graph together with its boundary walk w : A −→ A.
Section 3. Gluing and closing of relative tête-à-tête graphs. First we de-
scribe the procedure of closing. We do it by an example. Consider (S6,1+2, A,K

′
2,13).

We have two relative boundary components A1 and A2. In oder to close these com-
ponents, we choose a piece-wise linear orientation reversing selfmap s1 : A1 −→ A1

of order 2. The boundary component A1 will be closed if we identify the pieces
using the map s1. In order to get the tête-à-tête property we do the same with the
component A2, but we have to take care: the involution s2 : A2 −→ A2 is equi-
variant via the boundary walk w : A1 −→ A2 to the involution s1 : A1 −→ A1.
Hence we put p ∈ A2 7→ s2(p) := w ◦ s1 ◦ w−1(p) ∈ A2. More concretely, we can
choose for s1 : A1 −→ A1 an involution that exchanges in an orientation reversing
way the opposite edges of an hexagon. If we do so, we get a surface S8,1 with
tête-à-tête graph. The corresponding twist is the geometric monodromy of the
singularity (x3 − y2)2 − x5y, see [A′C]. If we make our choices for the involution
s1 generically, the resulting graph Γ on S8,1 will have 43 vertices, 58 edges, 13
vertices of valency 2, 30 vertices of valency 3. The length of the 26 edges that are
incident with a vertex of valency 2 is 1− ǫ. The computation of the length of the
remaining 32 edges is more difficult. The length of the boundary component A1 is
26ǫ, hence the total length of the remaining edges is 26ǫ. A generic choice for the
hexagon in the metric circle A1 having opposite sides of equal length depends on
3 parameters. The following choice for s1 is very special, but allows an easy de-
scription of the resulting metric graph. The involution s1 is obtained by choosing
the hexagon H = [a, b, c, d, e, f ] as follows: First take in the boundary component
A1 of (S6,1+2, A,K

′
2,13) two vertices, say vertex a = 1 and c = 2, where we label

the thirteen vertices on A1 cyclicly. Take for b the midpoint between a and c.
Take d opposite to a, e = 8 opposite to b, and finally f opposite to c. So, d is the
midpoint between the vertices 7 and 8 and f is the midpoint between vertices 8
and 9. The involution s2 on component A2 is deduced from s1 by w-equivariance.
The resulting graph on Γ on S8,1 has 13 vertices of valency 2, 2 vertices of valency
6, 10 vertices of valency 4. Moreover, Γ has 6 edges of length ǫ, 10 of length 2ǫ
and 26 of length 1− ǫ.

Now an example of gluing of relative tête-à-tête graphs. We glue in an walk
equivariant way two copies, say L =left and R =right of (S2,1, A,K

′
2,5). So we glue

the top boundary AL
1 orientation reversing, but isometrically to the top boundary

AR
1 . We have a 1-dimensional family of gluings. We glue the bottom boundaries

AL
2 and AR

2 w-equivariantly. We get a tête-à-tête graph on the surface S5,2. The
corresponding twist is the monodromy of the singularity (x3 − y2)(x2 − y3), see
[A′C]. We can glue in a special way, such that the 5 vertices on AL

1 match with
the 5 vertices on AR

1 . We get a graph Γ on S5,2 with 10 vertices of valency 4 and
10 of valency 2. The 10 edges connecting vertices of valency 4 have length 2ǫ, the
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20 edges connecting vertices of valency 2 and 4 have length 1 − ǫ. We can also
glue by matching the vertices on AL

1 with midpoints in between vertices on AR
1 .

We get a graph Γ on S5,2 with 20 vertices of valency 3 and 10 of valency 2. The
20 edges connecting vertices of valency 3 have length ǫ, the 20 edges connecting
vertices of valency 2 and 3 have length 1− ǫ.

Remark 1. The real analytic mapping f : C2 −→ C given by f(x, y) =
(x3 − y2)2 − x4x̄y has an isolated singularity at 0 ∈ C2. This singularity is sym-
plectic in the following sense: locally near the singularity at 0 ∈ C2 the standard
symplectic form ω := −1

2i (dz1∧dz̄1+dz2∧dz̄2) on C2 restricts at each point p with
RankR(Df)p = 2 to a symplectic form on the smooth fiber of f through p. More-
over, the singularity at 0 ∈ C2 of the map f admits a Milnor type fibration. The
monodromy is the twist of the closure, as above, of the graph (S6,1+2, A,K

′
2,11).

The corresponding knot is the obtained by cabling the trefoil with the (2, 11) torus
knot. This cabling does not satisfy the Puiseux inequalities, so this knot is not the
link of an isolated complex plane curve singularity. This knot is however the knot
of a divide with 7 crossings, so still shares many properties with knots of isolated
plane curve singularities.

Remark 2. Let (Σg,r,Γ) be a tête-à-tête graph. For each oriented edge k of
Γ, let Dk ∈ H1(Σ, ∂Σ,Z) be the relative cycle, that is represented by an relatively
embedded copy of [0, 1] dual to the edge k. The cycle Dk is well defined and
changes sign by changes the orientation of k.

The expression δk := Dk − TΓ(Dk) is an absolut cycle in H1(Σ,Z). The map
Dk 7→ δk is a geometric model for the so called variation map H1(Σ, ∂Σ,Z) −→
H1(Σ,Z). We suspect that the cycles δk are indeed quadratic vanishing cycles: i.e
cycles that vanish at a smooth point of the discriminant in the versal deformation.
We enhance Γ by fixing an orientation for each of its edges. The map k ∈ e(Γ) 7→
δk ∈ H1(Σ,Z) induces a surjective linear map δ : Ze(Γ) −→ H1(Σ,Z). For each
vertex v of Γ, the relative cycle Rv :=

∑
{k∈e(Γ)|v∈k} ǫv,kDk, where ǫv,k = ±1 is the

intersection number of Dk with the oriented edge kv obtained from k by imposing
upon k the orientation “outgoing from” v. We have Rv = 0 in H1(Σ, ∂Σ,Z), hence
also ρv :=

∑
{k∈e(Γ)|v∈k} ǫv,kδk = 0 inH1(Σ,Z). The factRv = 0 is very geometric,

since the cycle
∑

{k∈e(Γ)|v∈k} ǫv,kDk is the boundary of an relatively embedded

disk in (Σ, ∂Σ). The map v ∈ v(Γ) 7→ ρv induces a map κ : Zv(Γ) −→ Ze(Γ) with
κ(v) =

∑
{k∈e(Γ)|v∈k} ǫv,kk ∈ Ze(Γ). Let τ : Z −→ Zv(Γ) be the linear map with

τ(1) =
∑

{v∈v(Γ)} κ(v).

The tête-à-tête twist TΓ acts on Γ by permutation of the sets e(Γ) and v(Γ).
The action on e(Γ) permutes the edges but does not necessary respect the choosen
orientations of the edges. The action of TΓ on e(Γ) and an orientation of the
edges leads to a signed permutation matrix. Moreover, the maps τ, κ and δ are TΓ
equivariant, so, since the sequence of maps τ, κ and δ is exact, we get a presentation
by signed permutation matrices of semi-simple part of the action of TΓ upon the
homology H1(Σ,Z).

Remark 3. Let (Σg,r,Γ) be a tête-à-tête graph describing the monodromy of a
plane curve singularity. The alternating product of the characteristic polynomials
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of the action of TΓ on Z,Zv(Γ) and Ze(Γ) is the ζ-function of the monodromy of the
singularity. For instance, we get ζxp+yq (t) = (1 − tpq)(1− tp)−1(1− tq)−1(1− t).

This is work in progress. For isolated singularities of complex hypersurfaces
f : Cn+1 −→ C we have a construction providing its Milnor fiber with a spine, that
consists of lagrangian strata. Again the geometric monodromy is concentrated at
the spine. The monodromy diffeomorphism is a generalized tête-à-tête twist. The
link of the singularity is decomposed in pieces that are tangent sphere bundles over
the langrangian strata. So, we have the possibility of describing combinatorially
the contact structure of the link of the singularity.
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Nearby cycles and motivic characteristic classes

Jörg Schürmann

We are working in the complex algebraic context. Using Saito’s deep theory of
algebraic mixed Hodge modules [7, 8], we introduced in [3] the motivic Chern class
transformations as natural transformations (commuting with proper push down)
fitting into a commutative diagram:

G0(X)[y] −−−−→ G0(X)[y, y−1] G0(X)[y, y−1]

mCy

x mCy

x
xMHCy

K0(var/X) −−−−→ M(var/X)
χHdg−−−−→ K0(MHM(X)) .

Here G0(X) resp. K0(MHM(X)) is the Grothendieck group of coherent sheaves
resp. algebraic mixed Hodge modules on X , and K0(var/X) resp. M(var/X) :=

K0(var/X)[L−1] is the (localization of the) relative Grothendieck group af complex
algebraic varieties over X (with respect to the class of the affine line L, compare
e.g. [2, 5]). Finally H∗(X) is either the Chow homology group CH∗(X) or the
Borel-Moore homology HBM

2∗ (X) of X (in even degrees).

The motivic Chern class transformations mCy,MHCy are a K-theoretical re-
finement of the Hirzebruch class transformations Ty∗,MHTy∗, which can be de-
fined by the (functorial) commutative diagram :

M(var/X)
χHdg−−−−→ K0(MHM(X))

MHCy−−−−−→ G0(X)[y, y−1]

Ty∗

y MHTy∗

y
ytd∗

H∗(X)⊗Q[y, y−1] −−−−→ H∗(X)⊗Qloc
(1+y)−∗·←−−−−−− H∗(X)⊗Q[y, y−1] ,
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with td∗ : G0(X) −→ H∗(X)⊗ Q the Todd class transformation of Baum-Fulton-
MacPherson [1, 4] and (1 + y)−∗· the renormalization given in degree i by the
multiplication

(1 + y)−i· : Hi(−)⊗Q[y, y−1] −→ Hi(−)⊗Q[y, y−1, (1 + y)−1] =: H∗(−)⊗Qloc .

These characteristic class transformations are motivic refinements of the (ratio-
nalization of the) Chern class transformation

c∗ : F (X) −→ H∗(X)

of MacPherson [6], with F (X) the abelian group of algebraically constructible
functions. MHTy∗ factorizes by [9] as

MHTy∗ : K0(MHM(X)) −→ H∗(X)⊗Q[y, y−1] ⊂ H∗(X)⊗Qloc ,

fitting into a (functorial) commutative diagram

F (X)
χstalk←−−−− K0(D

b
c(X(C)))

rat←−−−− K0(MHM(X))

c∗⊗Q
y c∗⊗Q

y
yMHTy∗

H∗(X)⊗Q H∗(X)⊗Q
y=−1←−−−− H∗(X)⊗Q[y, y−1] .

Here Db
c(X(C)) is the derived category of algebraically constructible sheaves

on X (viewed as a complex analytic space), with rat associating to a (complex
of) mixed Hodge module(s) the underlying perverse (constructible) sheaf complex,
and χstalk is given by the Euler characteristic of the stalks. A famous result of
Verdier states, that the MacPherson Chern class transformation c∗ commutes with
specialization [12]. Let f : X −→ C an algebraic function with X0 := {f = 0}.
Then Deligne’s nearby cycle functor

Ψf : Db
c(X) −→ Db

c(X0) induces Ψf : F (X) −→ F (X0)

as a similar transformation for constructible functions. Assume now that X0

is a hypersurface of codimension one, so that one also has a homological Gysin
homomorphism for the inclusion i : X0 = {f = 0} −→ X ([12, 4]):

i! : H∗(X) −→ H∗−1(X0) and i! : G0(X) −→ G0(X0) .

Then Verdier’s specialization result can be formulated as the equality of the fol-
lowing two transformations:

(1) F (X)
c∗◦Ψf=−−−−−→

i!c∗
H∗(X0) .

One can also consider the nearby cycle functor Ψf either on the motivic level of
localized relative Grothendieck groups (see [2, 5]), or on the Hodge theoretical level
of algebraic mixed Hodge modules ([7, 8]), “lifting” the corresponding functors on
the level of algebraically constructible sheaves and functions, so that the following
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diagram commutes (with Ψ′H
f := ΨH

f [1] the shifted functor):

M(var/X)
Ψm

f−−−−→ M(var/X0)

χHdg

y χHdg

y

K0(MHM(X))
Ψ′H

f−−−−→ K0(MHM(X0))

rat

y rat

y

K0

(
Db

c(X(C))
) Ψf−−−−→ K0

(
Db

c(X0(C))
)

χstalk

y χstalk

y

F (X)
Ψf−−−−→ F (X0) .

Then we can prove the following counterpart of Verdier’s specialization result [10]:

Theorem 1. Assume that X0 = {f = 0} is a global hypersurface of codimension
one. Then the motivic Hodge-Chern class transformation MHCy commutes with
specialization in the following sense:

(2) (1 + y) ·MHCy( Ψ
′H
f (−) ) = i!MHCy(−)

as transformations K0(MHM(X)) −→ G0(X0)[y, y
−1].

Another earlier result of Verdier [4, 11] states that the Todd class transforma-
tion td∗ of Baum-Fulton-MacPherson commutes with the Gysin homomorphisms
i! in these homology theories. Together with [9] one therefore gets the following
commutative diagram of specialization results:

(3)

K0(var(X))
Ty

∗
◦Ψm

f =
−−−−−−→

i!◦Ty
∗

H∗(X0)⊗Q[y]

χHdg

y
y

K0(MHM(X))
MHTy

∗
◦Ψ′H

f =−−−−−−−−−−→
i!◦MHTy

∗

H∗(X0)⊗Q[y, y−1]

χstalk◦rat

y
yy=−1

F (X)
c∗◦Ψf=−−−−−→

i!c∗
H∗(X0)⊗Q .

The motivic Chern class transformationMHCy is defined in terms of the filtered
de Rham complex of the filtered D-module underlying a mixed Hodge module. In
this context, our main result becomes a purely D-module theoretic result about
coherent D-modules with a good filtration F , which are strictly specializable (in
the sense of M.Saito [7]). Here one uses the D-module description of nearby cycles
in terms of the V -filtration of Malgrange-Kashiwara.
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Characteristic classes of complex hypersurfaces

Laurentiu Maxim

(joint work with Sylvain Cappell, Jörg Schürmann, Julius Shaneson)

An old problem in geometry and topology is the computation of topological and
analytical invariants of complex hypersurfaces, such as Betti numbers, Euler char-
acteristic, signature, Hodge numbers, etc. While the non-singular case is easier to
deal with, the singular setting requires a subtle analysis of the relation between the
local and global topological and/or analytical structure of singularities. For ex-
ample, the Euler characteristic of a smooth projective hypersurface depends only
of its degree and dimension. Similarly, the Hodge polynomial of a smooth hyper-
surface has a simple expression in terms of the degree and the cohomology class of
a hyperplane section. However, in the singular context the invariants of a hyper-
surface inherit additional contributions from the singular locus. For instance, the
Euler characteristic of a projective hypersurface with only isolated singularities
differs (up to a sign) from that of a smooth hypersurface by the sum of Milnor
numbers associated to the singular points. The purpose of this talk is to illustrate
the interplay between local and global properties of singularities by calculating the
motivic Hirzebruch classes [1] of singular hypersurfaces; see [2] for details.

Let X
i→֒ M be the inclusion of an algebraic hypersurface X in a complex

algebraic manifold M . If NXM denotes the normal bundle of X in M , then the
virtual tangent bundle of X , that is,

(1) TvirX := [i∗TM −NXM ] ∈ K0(X),

is independent of the embedding in M , so it is a well-defined element in the
Grothendieck group of vector bundles onX . Therefore, if cl∗ denotes a cohomology
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characteristic class theory, then one can associate to the pair (M,X) an intrinsic
(Borel-Moore) homology class defined as:

(2) clvir∗ (X) := cl∗(TvirX) ∩ [X ].

Assume, moreover, that there is a homology characteristic class theory cl∗(−) for
complex algebraic varieties, with good functorial properties, obeying the rule that
for X smooth cl∗(X) is the Poincaré dual of cl∗(TX). If X is smooth, then clearly
we have that clvir∗ (X) = cl∗(X). However, if X is singular, the difference between
the homology classes clvir∗ (X) and cl∗(X) depends in general on the singularities
of X . The aim is to understand the difference class clvir∗ (X)− cl∗(X) in terms of
the geometry of singular locus of X .

For example, if cl∗ = L∗ is the Hirzebruch L-polynomial and X is a compact
complex hypersurface, the difference between the intrinsic homology class Lvir

∗ (X)
and the Goresky-MacPherson L-class L∗(X) was explicitly calculated by Cappell
and Shaneson in terms of data of a fixed stratification of X as follows:

(3) Lvir
∗ (X)− L∗(X) =

∑

V ∈V0

σ(lk(V )) · L∗(V̄ ),

where V0 is the collection of strata contained in the singular locus ofX , all of which
are assumed simply-connected, and σ(lk(V )) is a signature invariant associated to
the link pair of the stratum V in (M,X).

If cl∗ = c∗ is the total Chern class in cohomology, the problem amounts to
comparing the Fulton-Johnson class cFJ

∗ (X) with the homology Chern class c∗(X)
of MacPherson. The difference between these two is measured by the so-called
Milnor class, a homology class supported on the singular locus of X . This was
computed by Parusiński and Pragacz as a weighted sum in the Chern-MacPherson
classes of closures of singular strata ofX , the weights depending only on the normal
information to the strata. For example, if X has only isolated singularieties, the
Milnor class equals (up to a sign) the sum of the Milnor numbers attached to the
singular points, which also explains the terminology.

Lastly, if cl∗ = td∗ is the Todd polynomial, then the Verdier-Riemann-Roch
theorem can be used to show that tdvir∗ (X) equals in fact the Baum-Fulton-
MacPherson Todd class td∗(X) of X .

The main goal of this talk is to discuss the (unifying) case when cl∗ = T ∗
y

is the cohomology Hirzebruch class of the generalized Hirzebruch-Riemann-Roch
theorem. The aim is to show that the results stated above are part of a more
general philosophy, derived from comparing the intrinsic class

(4) Ty
vir
∗ (X) := T ∗

y (TvirX) ∩ [X ]

with the motivic Hirzebruch class Ty∗(X) of [1]. This approach is motivated by
the fact that the L-polynomial L∗, the Todd polynomial td∗ and resp. the Chern
class c∗ are all suitable specializations of the Hirzebruch class T ∗

y .
Assume in what follows that X is a complex algebraic variety, which is globally

defined as the zero-set (of codimension one) of an algebraic function f :M −→ C,
for M a complex algebraic manifold. Next, recall that the motivic Hirzebruch
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class Ty∗(X) is the value taken on the (class of the) constant Hodge sheaf QH
X by

a natural transformation

(5) MHTy∗ : K0(MHM(X)) −→ HBM
2∗ (X)⊗Q[y, y−1, (1 + y)−1]

defined on the Grothendieck group K0(MHM(X)) of algebraic mixed Hodge mod-
ules on X , with values in the even dimensional Borel-Moore homology and coeffi-
cients in the ring Q[y, y−1, (1 + y)−1] (see [1]).

The main result of this talk is the following:

Theorem 2. Let V be a fixed Whitney stratification of X, and denote by V0

the collection of all singular strata (i.e., strata of dimension strictly smaller than
dimX). Let Fv be the Milnor fiber of a point v ∈ V . Assume that all strata V ∈ V0

are simply-connected. Then:

(6) Ty
vir
∗ (X)− Ty∗(X) =

∑

V ∈V0

(
Ty∗(V̄ )− Ty∗(V̄ \ V )

)
· χy([H̃

∗(Fv;Q)]) .

The requirement that all singular strata are simply-connected assures that all
monodromy considerations become trivial to deal with. However, in some cases
a lot of interesting information is readily available without any “monodromy”
assumptions. For example, if X has only isolated singularities, the two classes
Ty

vir
∗ (X) and resp. Ty∗(X) coincide except in degree zero, where their difference is

measured (up to a sign) by the sum of Hodge polynomials associated to the middle
cohomology of the corresponding Milnor fibers attached to the singular points.
These Hodge polynomials can in general be computed from the Hodge spectrum
of singularities, and are just Hodge-theoretic versions of the Milnor numbers. For
this reason, we regard the difference

(7) MTy∗(X) := Ty
vir
∗ (X)− Ty∗(X) ∈ H∗(X)⊗Q[y]

as a Hodge-theoretic Milnor class, and call it the Milnor-Hirzebruch class of the
hypersurface X . In fact, it is always the case that by substituting y = −1 into
MTy∗(X) we obtain the (rationalized) Milnor class of X . Therefore, Theorem 2
specializes in this case to a computation of the (rationalized) Milnor class of X ,
and the resulted formula holds without any monodromy assumptions.

The key ingredient used in the proof of Theorem 2 is the specialization prop-
erty for the motivic Hirzebruch class transformation MHTy∗ (see [3]). This is a
generalization of Verdier’s result on the specialization of the Chern-MacPherson
classes, which was used for computing the Milnor class of X , and shows that the
Milnor-Hirzebruch class MTy∗(X) of X = f−1(0) is entirely determined by the
vanishing cycles of the algebraic function f : M −→ C. So the Milnor-Hirzebruch
class is a measure of the complexity of singularities of X .

As an application of our result, we show that if X is a hypersurface with only
isolated singularities which moreover is a rational homology manifold, then the
Goresky-MacPherson L-class L∗(X) can be deduced from the motivic Hirzebruch
class Ty∗(X) for the value y = 1 of the parameter. This confirms a conjecture
of Brasselet-Schürmann-Yokura in this particular setting. When the hypersurface
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has only Du Bois singularities, we also obtain a characteristic class version of
Steenbrink’s cohomological insignificance.
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Nash problem for surface singularities is topological

Javier Fernández de Bobadilla

Nash problem [9] was formulated in the sixties (but published later) in the attempt
to understand the relation between the structure of resolution of singularities of an
algebraic varietyX and the space of arcs (germs of algebroid curves) in the variety.
He proved that the space of arcs centred at the singular locus (endowed with a
infinite-dimensional algebraic variety structure) has finitely many irreducible com-
ponents, and proposed to study the relation of these components with the essential
irreducible components of the exceptional set a resolution of singularities. An ir-
reducible component E of the exceptional divisor of a resolution of singularities

π : X̃ −→ X

is called essential, if given any other resolution

π′ : X̃ ′ −→ X

the birational transform of E to X̃ ′ is an irreducible component of the exceptional
divisor. Nash defined a mapping from the set of irreducible components of the
space of arcs centred at the singular locus to the set of essential components of a
resolution as follows: he assigns to each component Z of the space of arcs centred
at the singular locus the unique component of the exceptional divisor which meets
the lifting of a generic arc of Z to the resolution. Nash established the injectivity
of this mapping and asked whether it is bijective. He viewed as a plausible fact
that Nash mapping is bijective in the surface case, and also proposed to study the
higher dimensional case.

Nash gave an affirmative answer to his problem in the case of Ak-singularities.
Since then there has been much progress showing an affirmative answer to the
problem for many classes of singularities: non-necessarily toric singularities of
arbitrary dimension, quasi-ordinary singularities, certain infinite families of non-
normal threefolds, minimal surface singularities, sandwiched surface singularities,
and other classes of surface singularities defined in terms of the combinatorics
of the minimal resolution (see [1],[2],[3],[4],[7],[8],[10],[11],[12],[14],[15]). However,

0Research partially supported by the ERC Starting Grant project TGASS and by Spanish
Contract MTM2007-67908-C02-02. The author thanks to the Faculty de Ciencias Matemáticas
of the Universidad Complutense de Madrid for excellent working conditions.
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Ishii and Kollár showed in [2] a 4-dimensional example with non-bijective nash
mapping. Now the general problem has turned into characterising the class of
singularities with bijective Nash mapping. Besides Nash problem, the study of arc
spaces is interesting because it lays the foundations for motivic integration and
because the study of its geometric properties reveals properties of the underlying
varieties (see papers of Denef, Loeser, de Fernex, Ein, Ishii, Lazarsfeld, Mustata,
Yasuda and others).

Nash problem seems different in nature in the surface case than in the higher
dimensional case, since birational geometry in dimension 2 is much more simple
than in higher dimension. For example the essential components are the irreducible
components of the exceptional divisor of a minimal resolution of singularities.
Although Nash problem in known for many classes of surfaces it is not yet known,
for example, for the simple singularities E6, E7 and E8. From now on we shall
concentrate in the surface case, we let (X,O) be a normal surface singularity
defined over a field of characteristic 0, and X∞ denotes the space of arcs through
the singular point.

Let us explain the approach to Nash problem based on wedges, due to M.
Lejeune-Jalabert [5]. Let Eu be an essential component of a surface singularity
(X,O). Denote by NEu

the set of arcs whose lifting meets Eu. The space of arcs
centred at the singular point splits as the union of the NEu

’s. It is known (Remark
2.3 of [13]) that the NEu

’s are constructible subsets of the space of arcs, and that
Ev is not in the image of the Nash map if and only if NEv

is in the Zariski closure
NEu

of a different essential component Eu. If Curve Selection Lemma were true
in X∞ then, for any arc

γ : Spec(K[[t]]) −→ (X,O)

in NEv
there should exists a curve in X∞ with special point γ and generic point

an arc on NEu
. Giving a curve in X∞ amounts to give a morphism

α : Spec(K[[t, s]]) −→ (X,O)

mapping V (t) to O. Such a morphism is called a wedge. The lifting to X̃ of a
generic arc in NEv

is transversal to Ev, and if a wedge α has special arc equal to
γ and generic arc in NEu

it is clear that the rational lifting

π−1◦α : K[[t, s]]) −→ X̃

has an indetermination point at the origin, and hence there is no morphism lifting
α to X̃. In [5], M. Lejeune-Jalabert proposes to attack Nash problem by studding
the problem of lifting wedges whose special arc is a transversal arc through an
essential component of (X,O).

Since Curve Selection Lemma in not known to hold in the space of arcs A.
Reguera [13] introduced K-wedges, which are wedges

α : Spec(K[[t, s]]) −→ (X,O)

defined over a field extension K of K and proved the following characterisation:
an essential component Ev is in the image of the Nash map if and only if any
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wedge whose special arc is the generic point of NEv
and whose generic arc lifts

to Ev admits a lifting to the resolution. However the field of definition K of the
involved wedges has infinite transcendence degree over K and, hence, it is not easy
to work with them. Building on this result and assuming that K is uncountable,
A. Reguera [13] and M. Lejeune-Jalabert (Proposition 2.9, [6]) proved a sufficient
condition for a divisor Ev to be in the image of the Nash map based on wedges
defined over the base field: it is enough to check that any K-wedge whose special
arc is transversal to Ei arc through a very dense collection of closed points of Ei

lifts to X̃ (a very dense set is a set which intersects any countable intersection of
dense open subsets). The results of [13] and [6] hold in any dimension.

Our first main result is a characterisation of all the possible adjacencies between
essential components of the exceptional divisor of a resolution (a component Eu

is adjacent to Ev if NEv
is contained in the Zariski closure of NEu

) in terms of
wedges defined over the base field. We prove:

Theorem A. Let (X,O) be a normal surface singularity defined over an al-
gebraically closed field K of characteristic 0. Let Eu, Ev be different essential
irreducible components of the exceptional divisor of a resolution. Equivalent are:

(1) the component Eu is adjacent to Ev.
(2) There exists a K-wedge whose special arc has lifting transversal to Ev and

with generic arc belonging to NEu
.

If the base field is C the following condition is also equivalent:

• Given any convergent arc γ whose lifting is transversal to Ev there exists
a convergent C-wedge with special arc γ and generic arc belonging to NEu

.

An inmediate Corollary characterises the image of the Nash maps in terms of
K-wedges:

Corollary B. Let (X,O) be a normal surface singularity defined over an al-
gebraically closed field K of characteristic 0. Let Ev be an essential irreducible
component of the exceptional divisor. Equivalent are:

(1) The component Ev is in the the image of the Nash map.
(2) There not exists a different component Eu and a K-wedge whose special

arc has lifting transversal to Ev and with generic arc belonging to NEu
.

If the base field is C the following condition is also equivalent:

• There exists a convergent arc γ whose lifting is transversal to Ev such that
there is no convergent C-wedge with special arc γ and generic arc belonging
to NEu

, for a different component Eu of the exceptional divisor.

Our result improves the result of [6] in the following sense: for proving that
Ev is not in the image of the Nash map it is sufficient to exhibit a single wedge
defined over the base field with the condition stated above. If K = C, in order to
prove that Ev is in the image of the Nash it is sufficient to find a single convergent
arc whose lifting is transversal to Ev such that any wedge having γ as special
point has generic point in Eu. Our condition on the wedges is more precise that
the liftability, since, when a component Ev is not in the image of the Nash map,
we want to keep track of the responsible adjacencies. However we prove also an
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improvement of the result of [6] in terms of the original condition of lifting wedges
of [5]:

Theorem C. Let (X,O) be a normal surface singularity defined over C. Let
Ev be any essential irreducible component of the exceptional divisor of a resolution
of singularities. If there exists a convergent arc γ whose lifting is transversal to
Ev such that any C-wedge having γ as special arc lifts to X̃, then the component
Ev is in the image of the Nash map.

The ideas of the proofs are as follows: if the Zariski closure of NEu
contains NEv

we use Corollary 4.8 of [13] to obtain a K-wedge (with K an infinite transcendence
degree extension of K) whose special arc is the generic point of NEv

and whose
generic arc lifts to Eu, after we follow a specialisation procedure to obtain a K-
wedge whose special arc has lifting transversal to Ev and with generic arc belonging
to NEu

.

In the other direction, given an arc γ whose lifting to X̃ is transversal to Ev, a
K-wedge whose special arc is γ and with generic arc belonging to NEu

(with Eu

another component of the exceptional divisor) will be called a wedge realising an
adjacency fromEu to γ. We use Popescu’s Approximation Theorem to replace such
a K-wedge by an algebraic one with the same property with respect to another
transversal arc γ′. After, using Stein Factorisation, we “complete” the wedge
and factorise it through a finite covering of normal surface singularities realising
an adjacency from Eu to γ′. We prove that there exists a wedge realising an
adjacency from Eu to γ′ if and only if there exists a finite covering realising an
adjacency from Eu to γ′. Using Lefschetz Principle we can reduce the existence of
a finite covering realising an adjacency from Eu to a γ′ to the analogue statement
in the complex analytic case. After doing this, using a topological argument and
a suitable change of complex structures we prove that given two convergent arcs
γ and γ′ on a complex analytic normal surface singularities there exists a finite
covering realising an adjacency from Eu to a γ if and only if there exists a finite
covering realising an adjacency from Eu to a γ′. This results allows to move wedges
in a very flexible way, and is the key to the characterisation given above.

Using the same kind of technique we prove also the following surprising result:
Theorem D. The set of adjacencies between exceptional divisors of a normal

surface singularity is a combinatorial property of the singularity: it only depends
on the dual weighted graph of the minimal good resolution. In the complex analytic
case this means that the set of adjacencies only depends on the topological type of
the singularity, and not on the complex structure.

The last result allows us to play with combinatorial and topological arguments
in order to study and compare the adjacency structure of different singularities.
This is exploited in the last section: we prove reductions of Nash problem for
singularities with symmetries in the dual weighted graph of the minimal good
resolution. We prove a result showing that if there is an adjacency between two
divisors, there should exists a certain path of rational components in the excep-
tional divisor. We prove results comparing the adjacency structure of different
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singularities. We also reduce the Nash problem in the following sense: we intro-
duce extremal graphs, which is a subclass of the class of dual graphs with only
rational vertices and no loops and extremal rational homology spheres, which are
the plumbing 3-manifolds associated with extremal graphs.

Corollary E. If the Nash mapping is bijective for singularities whose minimal
good resolution graph is extremal then it is bijective in general. Equivalently, if
the Nash mapping is bijective for all complex analytic normal surface singularities
having extremal Q-homology sphere links then it is bijective in general.

The last Corollary improves Proposition 4.2 of [6], which reduces Nash problem
for surfaces to the class of surfaces having only rational vertices in its resolution,
and makes essential use of Theorem D.
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A viewpoint on local resolution of singularities

Bernard Teissier

In the talk I gave a brief report on the progress made towards resolution of sin-
gularities in positive characteristic as it was presented by various groups during
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the RIMS workshop of December 2008. (See the following homepage for details and
documents: http://www.kurims.kyoto-u.ac.jp/ kenkyubu/proj08-mori/index.html)

Apart from the work of Cossart-Piltant proving resolution of singularities in
dimension 3 in the equicharacteristic case (see [2], [3]), all approaches follow the
approach of Hironaka’s fundamental paper, as modified by Villamayor to put the
idealistic exponents, or basic objects, at the center of the process, as the only
objects which need to be resolved (see [4], [8]).

An idealistic exponent on a non singular space W is a pair (J, b) of a coherent
Ideal J on W and an integer b ≥ 1. Its singular locus is the set of points x of W

where νx(J)
b > 1. The order νx(J) is the largest integer n such that Jx ⊆ mn

x .
One then defines a permissible center for (J, b) as a non singular subvariety

Y of W which is contained in the singular locus of (J, b). The transform of
(J, b) by the blowing-up W ′ −→ W with center Y is then defined as (J ′, b′) =
((IY OW ′)−bJOW ′ , b).

The goal is then essentially to prove the existence of a finite sequence of permis-
sible blowing-ups such that the final singular locus is empty. In fact all groups try
to prove the existence of a canonical process, and one has to use a richer definition
of idealistic exponents and their transforms, taking into account at each stage the
exceptionnal divisors created by the previous blowing-ups. In order to produce a
canonical process one associates to an idealistic exponent an ”invariant” at each
point of W , with values in an ordered set and such that the set of points of W
where the invariant is the worst (largest) is non singular, or at least has simple
normal crossings, and that blowing it up (or blowing up its components in some
order) will make the worst invariant decrease strictly.

The main problem in positive characteristic is the non-existence of ”hypersur-
faces of maximal contact” with (J, b) inW . In characteristic zero, one can define on
such non singular hypersurfaces a ”trace” of the idealistic exponent which retains
enough information about the order of the ideal and its behavior under permissible
blowing-up to permit a proof by induction on the dimension. All the attempts to
prove resolution in positive characteristic replace the idealistic exponent by (dif-
ferent) graded algebras which are stable under derivation, finitely generated and
in several cases integrally closed. The generators are expected to play the role of
maximal contact by allowing an inductive process.

The generators of the graded algebras just mentioned are monomials of the form

xp
ei

i where p is the characteristic, so that comparison with monomial ideals plays
a role in all programs.

In the last years I have been led to try to prove local uniformization (a very local
version of resolution) by a completely different method, in which the basic idea is
to compare a given singular germ by deformation with a space whose resolution
is easy and blind to the characteristic. The spaces in question are affine toric
varieties, which are defined by prime binomial ideals. I refer to [7] for their toric
embedded resolution and to [1] for the proof of a canonical embedded resolution
by composition of blowing-ups with equivariant non singular centers.
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Given a base field k, which we assume to be algebraically closed, the algebra
k[tΓ] of an affine toric variety over k is the semigroup algebra over k of a finitely
generated semigroup Γ, for example a polynomial ring k[u1, . . . , uN ]. A binomial
ideal in this algebra is an ideal generated by differences of terms, where a term
is the product of a monomial with an element of k∗. It turns out that there is a
deep relation between the most important valuations from the viewpoint of local
uniformization and affine toric varieties. See [9].

Let R be a noetherian excellent equicharacteristic local domain with an alge-
braically closed residue field k = R/m. Let ν be a valuation on R, corresponding
to an inclusion R ⊂ Rν of R in a valuation ring of its field of fractions. We may
assume that Rν dominates R in the sense that mν ∩R = m and that the residual
injection R/m →֒ Rν/mν is an isomorphism. This corresponds to the fact that
the point picked by ν in all schemes birationally dominating SpecR by a proper
map is a closed point.

In many important cases (see [9], [11]), one can check that there exists a formal
embedding of (SpecR,m) in an affine space (AN (k), 0) with the following prop-
erties: there is a system of coordinates such that the intersection of (SpecR,m)
with the torus TN(k) consisting of the complement of the coordinate hyperplanes
is dense, and a birational map of toric varieties Z −→ AN (k) with Z regular,
which is equivariant with respect to TN(k) and such that the strict transform of
(SpecR,m) in Z is non singular and transversal to the non dense orbits of Z at
the point of this strict transform picked by the valuation ν.
Such a result is a constructive form of local uniformization, at least if one can
effectively construct the embedding.

In the case of plane branches (see [5]) and more generally of quasi-ordinary hy-
persurfaces (see [6]), the smallest embedding with this property can be explicitely
constructed in characteristic zero from (generalized) Puiseux expansions.

Since it seems much easier to glue up the embeddings corresponding to various
valuations (by compactness of the Zariski-Riemann manifold a finite number suf-
fices) than to glue up à la Zariski various birational models, this led me to ask in
[10] the following:
Question: Given a noetherian excellent equicharacteristic local domain R with
an algebraically closed residue field k = R/m, does there exist a formal embedding
of (SpecR,m) with a toric birational map of toric varieties Z −→ AN (k) in ap-
propriate coordinates on AN (k) such that the strict transform of SpecR in Z is
non singular and transversal to the non dense orbits at each point mapped to the
closed point m of SpecR.
One may ask that in addition the singular locus of SpecR should be the union of
intersections with SpecR of sets of coordinate hyperplanes in this new embedding.
The map from the strict transform to SpecR is then an isomorphism outside of the
singular locus. I think of this as a generalization of the condition of non-degeneracy
with respect to a Newton polyhedron.

This would imply local resolution of singularities and the difficulty is moved
from the study of the behaviour of the order of ideals under certain blowing ups
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to the search of functions in R having very special properties. The simplest non
trivial example is the plane curve (y2−x3)2− x5y = 0 which can be resolved by a
single toric modification of the ambient space only after being embedded in A3(k)
by the functions x, y, y2 − x3. See [5], [9] and [11].

After hearing me mention this last January at the Workshop on Toric Geometry
(see [11]), Jenia Tevelev kindly sent me a proof of the following:
Theorem (Tevelev) Let k be an algebraically closed field of characteristic zero
and let X ⊂ Pn(k) be a projective algebraic variety. Then, for a sufficiently high
order Veronese reembedding X ⊂ PN (k) one can choose projective coordinates
z0 : . . . : zN such that if TN(k) is the torus (k∗)N consisting of the complement of
the coordinate hyperplanes in PN (k),

• The intersection of X with TN(k) is dense in X ,
• There exists a nonsingular toric variety Z and an equivariant map
Z −→ PN (k) such that the strict transform of X is non singular and
transversal to the non dense toric orbits in Z.

The proof uses resolution of singularities and answers the question in characteristic
zero for algebraizable singularities while of course one would hope to prove local
resolution in the manner I have described. Still, it is very encouraging.
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[7] P. González Pérez et B. Teissier Embedded resolutions of non necessarily normal affine toric
varieties, Comptes-tendus Acad. Sci. Paris, Ser.1, 334, (2002), 379-382.

[8] J. Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, 166.
Princeton University Press, Princeton, NJ, 2007.

[9] B. Teissier, Valuations, deformations, and toric geometry, Valuation Theory and its appli-
cations, Vol. II, Fields Inst. Commun. 33, AMS., Providence, RI., (2003), 361-459.

[10] B. Teissier, Monomial ideals, binomial idals, polynomial ideals, Trends in Commutative
Algebra, MSRI publications, Cambridge University Press (2004), 211-246.

[11] B. Teissier, Overweight deformations of weighted affine toric varieties, Oberwolfach work-
shop on Toric Geometry, January 2009, Oberwolfach Report OWR 2009 01.

[12] J. Tevelev, On a question of Bernard Teissier. letter to the author, J



24 Oberwolfach Report 43/2009

The universal unfolding is an atlas of Stokes data for the simple and
the simple elliptic singularities

Claus Hertling

In 2007 Céline Roucairol and I did some joint work on the Stokes data of the sim-

ple singularities Aµ, Dµ, E6, E7, E8 and the simple elliptic singularities Ẽ6, Ẽ7, Ẽ8.
The results are complete, but we still have to write them up (hopefully soon).

In the case of germs of functions with isolated singularities and especially in
the case of quasihomogeneous functions, the Lefschetz thimbles correspond to
vanishing cycles, and Stokes data are equivalent to distinguished bases of vanishing
cycles. These have been studied by Looijenga [Lo] and Deligne [De] in the ADE
case and later in general by A’Campo, Brieskorn, Ebeling, Gabrielov, Gusein-
Zade, Kluitmann, Voigt and others. Most of this work has a topological and
combinatorial flavour. But [Lo] and [De] together imply a beautiful global 1-1
correspondence in the ADE cases, which is formulated in [Mi, 39.] and [Yu, 4.6.3],
but still not well known.

Roughly, the base M ∼= Cµ of a universal unfolding is an atlas of Stokes data.
More precisely, after some choice, M obtains a complicated decomposition into
Stokes walls (real hypersurfaces with boundaries) and simply connected Stokes re-
gions. For example in the Aµ case there are (µ+1)µ−1 Stokes regions. By [Lo] and
[De] these Stokes regions are in 1-1 correspondence with the distinguished bases
up to signs. And the combinatorial structure of the Stokes regions and Stokes
walls reflects the braid group action on the distinguished bases. Here the surjec-
tivity of the correspondence is the simpler part, the injectivity is more difficult
and follows from equality of numbers. The number of Stokes regions is the degree
of the Lyashko-Looijenga map. This degree is the result of a simple calculation in
[Lo]. The number of distinguished bases is more difficult to determine, for Aµ it
is in [Lo], for Dµ and Eµ it is one main point of [De].

There is a second coarser 1-1 correspondence between Stokes regions up to iso-
morphism and Coxeter-Dynkin diagrams up to signs. One obtains it from the 1-1
correspondence above by dividing out on both sides a finite group of automor-
phisms. In the Aµ case it is cyclic of order µ + 1. It acts on M by rotation and
on the distinguished bases by cyclic renumbering.

Roucairol and I have generalized both correspondences to the case of the simple

elliptic singularities Ẽ6, Ẽ7, Ẽ8. We started with the Legendre normal form with
parameter spaceM0 = C−{0, 1} and chose a global everywhere universal unfolding
on M ∼= (a vector bundle or rank µ− 1 on M0). This global unfolding and M are
not canonical, but the universal covering Muniv −→ M and a certain quotient
M/ ∼M by an analytic equivalence relation with finite classes are canonical; then
M/ ∼M

∼= Muniv/G where the group G is a finite extension of PSL(2,Z). The
finer 1-1 correspondence compares Stokes regions in Muniv with distinguished
bases up to sign (the numbers of both are infinite). The coarser 1-1 correspondence
compares Stokes regions in the quotient M/ ∼M with Coxeter-Dynkin diagrams
up to sign (the numbers of both are finite and equal).
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In order to control the Lyashko-Looijenga maps from M and M/ ∼M , we
needed partial compactifications with good behaviour with respect to the Lyashko-
Looijenga maps. SINGULAR was useful for finding them. They show especially
that the Lyashko-Looijenga map is covering from the complement of caustic and
Maxwell stratum to Cµ − discriminant, in coincidence with [Ja], but they also
allow to determine its degree. For the finer 1-1 correspondence we could not
simply compare numbers, as they are infinite. An argument from [He, ch. 13.2]
on symmetries of singularities is useful. It applies also to ADE and is there more
conceptual than the comparison of numbers. Our work completes also work of
Kluitmann. He had calculated the number of Coxeter Dynkin diagrams in the

cases Ẽ6 [Kl1][Kl2] and Ẽ7 [Kl2], but not in the case Ẽ8. We calculated all three
by a completely different method, via the degree of the Lyashko-Looijenga map

and the coarser 1-1 correspondence above (and obtained the same values for Ẽ6

and Ẽ7).
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Adding divisors to make them free

David Mond

(joint work with Mathias Schulze)

A hypersurface D ⊂ Cn+1
is a free divisor if the OC

n+1-module Der (− logD) is
locally free. We prove three theorems along similar lines.

1. Adding the Adjoint

Theorem 1.1. Let f : (Cn
, 0) −→ (Cn+1

, 0) be a stable map-germ of corank 1,
let D be the image of f , and let A be an adjoint divisor. Then D + A is a free
divisor.
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Note that D itself is not free. Any stable mapCn −→ Cp
with n < p normalises

its image. By adjoint divisor we mean a divisor A ⊂ Cp
such that f∗(A) is the

conductor of the normalisation. An adjoint divisor has the property that as sets,
D ∩ A = Dsing.

Example 1.2. (1) Consider the stable map-germ f : (C2
, 0) −→ (C3

, 0) given
by f(u, x) = (u, x2, ux), whose image is the Whitney umbrella. Denote the first
coordinate in the target by U . Then one can take as the adjoint divisor the
hyperplane {U = 0}.

D+AD

(2) The image of a stable map of multiplicity k contains points at which it is
locally a normal crossing divisor of multiplicity k, with equation y1· · ·yk = 0 in
suitable local coordinates. As adjoint at such a point one can take the divisor
{y2· · ·yk + y1y3· · ·yk + · · ·+ y1· · ·yk−1 = 0}.

Theorem 1.3. Let D ⊂ Cµ
be the discriminant in the base-space of an Re-

miniversal deformation of a weighted homogeneous function germ f : (Cn
, 0) −→

(C, 0). Let d be the weighted degree of f , and let d1, . . ., dµ be the weighted degrees
of the homogeneous members of a C-basis of the Jacobian algebra of f , with d1
the weight of the Hessian. Assume that d− d1 +2di 6= 0 for i = 2, . . ., µ. Let A be
an adjoint divisor of D. Then D +A is a free divisor.

Here D itself is already a free divisor. The numerical condition holds for the
simple singularities, since there d1 < d. It is easy to check that it holds for
irreducible functions of two variables, of the form f(x, y) = xp + yq. We do not
know whether the statement holds if this numerical condition is not met, nor
indeed whether it holds for function-germs which are not weighted homogeneous.

Let D ⊂ V be as in Theorems 1.1 or 1.3, and let D̄ be its normalisation (smooth
in both cases). Let F1 be the first Fitting ideal of OD̄ as OV - module.

Let h be an equation for the adjoint A. A key step in the proof of Theorems
1.1 and 1.3 involves showing that dh defines a surjective morphism

(1) Der (− logD) −→ F1.

That dh(Der (− logD)) ⊂ F1 holds because F1 is intrinsically determined byD and
logarithmic vector fields are infinitesimal automorphisms of D. It seems that the
representation of the Lie algebra Der (− logD) on F1 contains a lot of information.
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2. Pulling back a free divisor

A free divisor D ⊂ Cn
is linear if there is a basis of Der (− logD) consisting

of vector fields of weight zero - i.e. whose coefficients are all linear forms. The
simplest example is the normal crossing divisor {x1· · ·xn = 0} ⊂ Cn

. More
examples may be found in [1] and [2].

If D is a linear free divisor then the group GD ⊂ Gl(Cn
) consisting of linear

automorphisms preserving D has an open orbit in Cn
whose complement is D

itself, and moreover the Lie algebra of GD is isomorphic, under the infinitesimal
action of gln, to the Lie algebra of weight-zero members of Der (− logD). If
D1. . ., Dk are the irreducible components of D, and f1, . . ., fk are homogeneous
equations for them, then by results of [5] it follows that there exist vector fields
χj ∈ Der (− logD) such that dfi(χi) = fi and dfi(χj) = 0 if i 6= j.

Theorem 2.1. Suppose that D = ∪ki=1Di ⊂ Cn
is a free divisor and for i =

1, . . ., k let fi be a reduced equation for Di. Suppose that for j = 1, . . ., k, there exist

vector fields χj such that dfi(χi) = fi and dfi(χj) = 0 if i 6= j. Let f : Cn −→ Ck

be the map with components f1, . . ., fk (so D is the preimage of the normal crossing

divisor N := {y1· · ·yk = 0} ⊂ Ck
). Let E ⊂ Ck

be a divisor such that N + E is
free. Then D + f−1(E) is free.

The proof is elementary, and makes use of nothing more than Saito’s criterion
([4]). The theorem can be applied in an obvious way to a linear free divisor with
irreducible components D1, . . ., Dk. It may also be applied taking as the Di the
unions of disjoint collections of the irreducible components of D. For example, if
g ∈ OC

2,0 is any germ not divisible by either of the variables, then for any n > 1
and any k with 1 ≤ k < n, the divisor with equation

x1· · ·xn × g(x1· · ·xk, xk+1· · ·xn) = 0

is free.
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Gauß-Manin systems and Frobenius manifolds for linear free divisors

Christian Sevenheck

(joint work with David Mond, Ignacio de Gregorio)

Linear free divisors have been recently introduced by Mond and Buchweitz ([1])
as special examples of free divisors. A reduced divisor D = h−1(0) ⊂ V := Cn is
called free if the coherent OV -module Der(− log D) := {ϑ ∈ DerV |ϑ(h) ⊂ (h)} is
OV -free of rank n. In that case, one can write any basis ϑ1, . . . , ϑn of Der(− log D)
in terms of the coordinate vector fields as ϑi =

∑
j aij∂xi

, and we call D linear
free if all aij are linear functions on V . The most simple example is the normal
crossing divisor given by h = x1 · . . . ·xn, but many more examples are constructed
as discriminants in quiver representation spaces. Linear free diviors are related to
the classical theory of prehomogeneous vector spaces, that is, tuples (V,G) such
that G acts linearly on V and has a Zariski open orbit. As have been shown in
[3], given a linear free divisor D, the group GD := {g ∈ GL(V ) | g(D) = D} makes
V into a prehomogeneous vector space, where the open orbit is the complement
V \D. Of particular importance is the case where GD is reductive, then we call D
a reductive linear free divisor.

By work of Sabbah and Douai ([2]), it is known that a universal unfolding space

of the Laurent polynomial f̃ := x1 + . . . + xn−1 +
1

x1·...·xn−1
carries a Frobenius

structure, which is known to be isomorphic to the quantum cohomology ring of
Pn−1. This Laurent polynomial can be seen as the restriction of the ordinary
polynomial f = x1 + . . . + xn to the non-singular fibres of the equation h =
x1 · . . . ·xn. Hence it seems natural to study linear functions on non-singular fibres
and on the central fibre of a morphism given by an equation defining a linear free
divisor. Let f ∈ C[V ] be a linear function. We want to study deformations of
f modulo coordinate changes preserving the morphism h : V → T = SpecC[t],
this is referred to as Rh-equivalence. The corresponding deformation (or Jacobi)
algebra is given by

T1
Rh/T

(f) :=
OV

df(Der(− log h))
,

where Der(− log h) := {ϑ ∈ DerV |ϑ(h) = 0} ⊂ Der(−log D). Actually, we
have the direct sum decomposition Der(−logD) = OVE ⊕ Der(− log h), where
E =

∑n
i=1 xi∂xi

. The first result concerns the finiteness of the above family of
Jacobian algebras.

Proposition 1 ([5]). Let D be reductive. Let V ∗ be the dual space of V , equipped
with dual action of G. Then (V ∗, G) is again prehomogenous, and the complement
D∗ of the open orbit in V ∗ is again linear free. If f ∈ V ∗\D∗, then h∗T

1
Rh/T

(f)

is OT -free of rank n. Moreover, the restriction of f to Dt := h−1(t), t 6= 0 has n
non-degenerate critical points.



Singularities 29

In order to construct Frobenius structures associated to the restrictions f|Dt

(and to f|D), we study families of Brieskorn lattices. More precisely, define

G0 :=
Ωn−1

V/T (log D)[θ]

(θd− df∧)Ωn−1
V/T (log D)[θ]

which is an OT [θ]-module, equipped with connection operators θ2∇θ and θt∇t,
i.e., with a connection

∇ : G0 −→ G0 ⊗ θ−1Ω1
C×T ((log {0} × T ) ∪ (C× {0})).

Here

Ω•
V/T (log D) :=

Ω•
V (log D)

h∗Ω1
T (log {0}) ∧Ω•−1

V (log D)

is the relative logarithmic de Rham complex. One of the main results of [5] is the
following.

Theorem 2. Let f ∈ V ∗\D∗. Then

(1) The restrictions f|Dt
are cohomological tame functions in the sense of [6].

(2) G0 is OT [θ]-free of rank n.
(3) There is a basis ω such that

∇(ω) = ω ·
[
(A0

1

z
+A∞)

dz

z
+ (−A0

1

z
+A′

∞)
dt

nt

]

where A0 and A∞ are constant, A′
∞ := diag(0, 1, . . . , n−1)−A∞ and A∞

is diagonal. These diagonal entries are not necessarily the spectral numbers
of the tame functions f|Dt

but can be turned into them after some base
change which is meromorphic along 0 ∈ T , i.e., there is some other basis
ω′ of G0 ⊗ OT [θ, t

−1], in which the connection also takes the above form
and where the diagonal entries of A∞ are the correct spectral numbers.

As a consequence (by some more arguments concerning the duality theory for
these families of Brieskorn lattices), one obtains the following results.

Theorem 3. (1) The semi-universal unfoldings (Mt, 0) of the tame functions
f|Dt

can be equipped with the structure of Frobenius manifolds, depending
(among other things) on the choice of a primitive and homogenous section
of G0. Any element ω′

i of the above mentioned basis ω′ can be chosen as
such a form.

(2) The germs (Mt, 0) of Frobenius manifolds glue to a germ (T ∗×Cµ−1, T ∗×
{0}), where T ∗ := T \{0} = C∗.

(3) Under some conjecture on the duality theory of G0, there exists a “limit”
Frobenius structure associated to f|D, which is constant, i.e., its potential
is a polynomial of degree three.

In order to understand the properties of the duality theory of G0, it is desirable
to have some more concrete informations on the possible values that occur in
the matrix A′

∞. It turns out that they are related to the roots of the Bernstein
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polynomial bh(s) of h. It has been shown in [4] that for a reductive linear free
divisor, these roots (normalized so that they are in the intervall (−∞, 1)) actually
lie in (−1, 1), are symmetric around 0 and that deg(bh) = n. The comparison
result with the diagonal entries of A′

∞ can be stated as follows.

Theorem 4 ([7]). (1) The roots of bh(s) are equal to the diagonal entries of
A′

∞.
(2) Consider the restriction G0(h)/(h), which is a free C[θ]-module of rank n

quipped with a connection operator θ2∇θ. This object does not depend on
the choice of f , has a regular singularity at θ = 0, and the eigenvalues of
the residue of ∇θ on its saturation are, up to multiplication by n, equal to
the roots of bh(s).

Notice that the second part of this result is an analogue of the classical theorem
of Malgrange relating the roots of the Bernstein polynomial of an isolated hyper-
surface singularity to the residues eigenvalues of the saturation of the Brieskorn
lattice.
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Universal Poisson deformations of affine symplectic varieties

Yoshinori Namikawa

A symplectic variety (X,ω) is a pair of a normal algebraic variety X and a holo-
morphic symplectic 2-form ω on the regular part Xreg of X such that ω extends

to a (not necessarily non-degenerate) holomorphic 2-form on a resolution X̃ of X .
Then Xreg admits a natural Poisson structure induced by ω. By the normality of
X , this Poisson structure uniquely extends to a Poisson structure on X . In this
lecture, I talked on the Poisson deformation of (X, { , }) obtained from a sym-
plectic variety (X,ω). One can define the Poisson deformation functor PDX from
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the category of local Artin C-algebras with residue field C to the category of sets.
The first main theorem is:

Theorem 1. Let (X,ω) be an affine symplectic variety. Then PDX is unob-
structed.

Let (X,ω) be the same as in Theorem 1. By Birkar, Cascini, Hacon and McK-
ernan, one can take a Q-factorial terminalization π : Y −→ X . By definition, Y
has only Q-factorial terminal singularities and π is a birational, crepant, projec-
tive morphism. The symplectic 2-form ω is pulled-back to a symplectic 2-form
on π−1(Xreg). Note that π−1(Xreg) is contained in the rular locus Yreg of Y .
Since π is semi-small, π∗(ω) further extends to a holomorphic symplectic 2-form
ω′ on Yreg and (Y, ω′) becomes a symplectic variety. Therefore, Y has a Poisson
structure, and we get the Poisson deformation functor PDY . It is relatively easy
to prove that PDY is unobstructed. Since X has rational singularities, there is a
natural blowing-down map of functors π∗;PDY −→ PDX . The map π∗ is a finite
Galois covering. Let R and S be the pro-representable hulls of PDX and PDY

respectively. Then there are formal universal Poisson deformations Xformal and
Yformal over the base spaces Spec(R) and Spec(S) respectively. The birational
map π induces a birational map Yformal −→ Xformal. It is not clear at all that
these are algebraizable. So, we assume the following condition

(*): X has a C∗-action with positive weights and ω is also positively weighted
with respect to the action.

Then everything can be algebraized. As a corollary of this construction, we
have the following remarkable result:

Theorem 2. Under the assumption (*), the following are equivalent:
(a): X has a crepant resolution.
(b): X has a smoothing by a Poisson deformation.

Wild geometry

Claude Sabbah

Linear differential equations of one variable in the complex domain lead to the
Stokes phenomenon and generalized monodromy data. Recent results of
T. Mochizuki [5, 6] and K. Kedlaya [3] on vector bundles with meromorphic
connection having irregular singularities make it possible to develop the Stokes
phenomenon in higher dimensions, using previous results of H. Majima [4] and the
author [8]. After a short survey of these results we propose tentative results for
the underlying geometry, called “wild geometry” in analogy with the wild ramifi-
cation in arithmetic. Some examples of Stokes-perverse sheaves are given, which
mix usual perverse sheaves in complex analytic geometry together with real con-
structible sheaves on the boundary of real blow-up spaces of a manifold along a
divisor.We also give an example of computation of the Stokes filtration of a direct
image D-module.
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In the usual complex algebraic geometry,

• the underlying spaces are complex algebraic varieties (or complex analytic
spaces),
• The monodromy phenomenon is treated sheaf-theoretically with local sys-
tems,
• introducing singularities in these local systems leads to C-constructible
sheaves, and then to perverse sheaves,
• one can realize each perverse sheaf as the sheaf of solutions of a system of
holonomic differential equations with regular singularities (the connection
matrix can be reduced to a normal form with logarithmic poles along a
normal crossing divisor),
• Hodge theory extends in this setting (pure or mixed Hodge D-modules of
M. Saito).
• Moreover (Griffiths-Schmid), Hodge theory implies tameness (the natu-
ral extension of a variation of Hodge structures defines a meromorphic
connection with regular singularities).
• Usual systems of differential equations in algebraic geometry (Gauss-Manin
systems) have regular singularities (i.e., are tame).

Wild geometry addresses the question of extending these properties to differen-
tial equations having possibly irregular singularities (the matrix of the connection
cannot be reduced to a matrix having logarithmic poles). The word “wild” is
given with analogy to “wild ramification” in arithmetic. What is the usefulness
for algebraic geometry?

• The classical theory of oscillating integrals produces such wild objects. If
F : X −→ A1 is a morphism from a smooth quasi-projective variety to the
affine line, the function I(τ) =

∫
X
e−τFω, for some algebraic differential

form of maximal degree on X , satisfies a differential equation which has
an irregular singularity at infinity.
• Such irregular connections occur in the notion of non-commutative Hodge
structure (and variations of such) introduced by Katzarkov, Kontsevich
and Pantev [2] as a model for the quantum cohomology of the projective
space. This is strongly related to the notion of TERP structure of Hertling
[1].

1. Stokes filtration on local systems and the R-H correspondence

The main part of the talk introduces the tools to define the Stokes filtration in
the following setting.

• X smooth complex projective variety.
• D is a divisor with simple normal crossings.

• X̃ is the real blow-up of the components of D (local polar coordinates).

We define the Stokes filtration for a meromorphic bundle onX with flat connection,
with poles on D at most. The associated local system L on X r D is naturally

extended on the boundary of X̃ . The Stokes filtration is defined by subsheaves
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of the pull-back of L on the étale space of the sheaf OX(∗D)/OX (or ramified
variants).

2. Example of computation of a Stokes filtration by direct image

We use the following setting: (E,∇) is free O∆[x]-module, equipped with a
meromorphic connection on ∆ × A1 (coordinates (z, x)) with logarithmic poles
along the divisor S ∪ (∆ × {∞}) and p : ∆ × A1 −→ ∆ denotes the projec-
tion. The exponentially twisted Gauss-Manin connection has underlying bundle

N = coker
(
E(∗S) ∇∂x+id−−−−−→ E(∗S)

)
, and has connection induced by ∇∂z

. This

corresponds to considering equations satisfied by integrals
∫
p f(z, x)e

xdx where f

is a multivalued horizontal section of ∇ out of S.

Question. To compute the formal normal form of N at z = 0 and the Stokes
filtration in terms of the local system ker∇ on (∆× A1)r S.

After ramification w.r.t. z, we can assume that the components Si of S go-
ing through (0,∞) have equation (1/x) = zqiui(z), ui(0) 6= 0. Set ϕi(z) =
1/[zqiui(z)].

Theorem (C. Roucairol [7]). The formal normal form of N is (up to ramification)
a direct sum of terms ∇i + dϕi, where ∇i has logarithmic poles. Each ∇i acts on
a vector bundle of rank equal to rkE and has monodromy whose characteristic
polynomial equals that of the monodromy of the nearby cycles of (E,∇) along Si.

Theorem (C.S.). The Stokes-filtered local system attached to N is obtained by
direct image from the (2-dimensional) Stokes-filtered local system attached to
(E(∗S),∇+ dx).
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Thom polynomials and non-associative Hilbert schemes

Maxim Kazarian

Isomorphism classes of local singularities determine loci in the source manifolds
of holomorphic mappings. These loci represent cohomology classes that can be
expressed as universal polynomials (known as Thom polynomials) in the relative
Chern classes ci of the mapping (see e.g. the review paper [1] and references
therein). For a given singularity type α its Thom polynomial Tpα depends nei-
ther on the particular (generic) mapping nor on the dimensions of the manifolds
involved in the mapping provided that the relative dimension ℓ is fixed. It was
shown previously by Rimányi and Fehér [3] that for any singularity type the de-
pendence on the relative dimension can be expressed in an infinite series of the
form

Tpα =
∑

(i1,...,iµ)∈Zµ

wi1,...,iµcℓ+1+i1 . . . cℓ+1+iµ

with independent of ℓ integer coefficients wi1,...,iµ , where µ is the dimension of the
local algebra of the singularity diminished by 1. It is convenient to encode such
an infinite sum by a formal Laurent-type generating series

Sα(t1, . . . , tµ) =
∑

(i1,...,iµ)∈Zµ

wi1,...,iµt
i1
1 . . . t

iµ
µ .

Theorem ([2]). The generating series for coefficients of the Thom polynomial
of any (contact) singularity type is rational. Moreover, it can be written explicitly
in the following form

Sα =

µ∏

i=1

teii
∏

1≤i<j≤µ

(tj − ti)
∏

1≤i≤j<k≤µ
wi+wj≤wk

(tk − ti − tj)
Pα(t1, . . . , tµ)

where e1, . . . , eµ and w1, . . . , wµ are certain numerical invariants of the singularity
and Pα is a polynomial.

The definition of Pα is not very explicit; this polynomial is known in some cases
but in general its computation is a problem for future investigations.

The theorem implies that the whole infinite Thom series can be uniquely recov-
ered from a finite number of its initial coefficients.

The proof of the theorem is based on a new realization of the local Hilbert
scheme of finite-codimensional ideals in the ring of function germs. The smooth
ambient space of this construction is called the non-associative Hilbert scheme.
Its points parameterize certain finite-dimensional commutative nilpotent algebras
which are not necessary associative. The (usual) Hilbert scheme can be identified
with the sublocus determined by the associativity condition.
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A partial case of the theorem for the case when α is a Morin singularity Aµ (i.e.
when the local algebra is isomorphic to C[x]/(xµ+1), µ ≥ 1) is a reformulation of
a result by Bérczi and Szenes [5].
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Equivariant classes of matrix matroid varieties

Richárd Rimányi

Thom polynomials of (local) singularities express the cohomology class represented
by singularity submanifolds of (global) maps between manifolds. A recently found
property of Thom polynomials of contact singularities sheds light on the behavior
of equivariant classes of matroid realization varieties.

In Section 1 we discuss the so-called “d-stability property” of Thom polyno-
mials of contact singularities. In Section 2 we study classical geometry problems,
under the name of “linear Gromov-Witten invariants for matroids”, using Thom
polynomial techniques.

1. Thom series of contact singularities of maps

The results of this section are joint with L. Fehér [FR]. They are also inspired
by a recent work of G. Bérczi and A. Szenes [BS]; and strongly influenced by
communication with M. Kazarian.

Let Q be a complex, commutative, finite dimensional, local algebra. For given
positive integers n < p let ξn,pQ be the contact singularity of germs (Cn, 0) −→
(Cp, 0) with local algebra Q.

1.1. Thom polynomials. For a map f : Nn −→ P p between compact complex
manifolds we define the singularity submanifold

ξn,pQ (f) = {x ∈ N : f has singularity ξn,pQ at x}.

Under certain transversality assumptions the cohomology class represented by the
closure of ξn,pQ in N can be computed by substituting the characteristic classes

ci(TN), f∗ci(TP ) into a polynomial depending only on ξn,pQ . This polynomial is

called the Thom polynomial of the contact singularity ξn,pQ .
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Figure 1. The Pappus configuration

1.2. Structure of Thom polynomials. It is known (Thom-Damon [D]) that the
Thom polynomial of contact singularities is a polynomial of the quotient variables
c, defined

1 + c1t+ c2t
2 + . . . =

1+ b1t+ b2t
2 + . . .+ bpt

p

1 + a1t+ a2t2 + . . .+ antn
,

where ai (resp. bi) are the variables where ci(TN) (resp. f∗(TP )) are to be
substituted.

Recently we showed [FR] how the Thom polynomial of ξn,p+1
Q determines ξn,pQ .

As a consequence the Thom polynomials of ξn,pQ for different n and p can be
organized into one formal power series, that we named Thom series, in infinitely
many variables. Eg. the Thom series of Q = C[x]/(x3) is

d20 + d−1d1 + 2d−2d2 + 4d−3d3 + 8d−4d4 + . . . ,

where ci = di+p−n+1. It also follows that the Thom polynomial, expressed in the
quotient variables ci (or di) has width (the number of factors in each term) at
most the dimension of Q minus 1. We named this property “d-stability”.

It is showed by Weber and Pragacz [PW] that in the so-called Schur basis,
Thom polynomials have non-negative coefficients.

2. Linear Gromov-Witten invariants for matroids

The results of this section are joint with L. Fehér and A. Némethi [FNR]. We
start with an example. Consider Figure 1, the Pappus configuration of nine points
on the complex projective plane. Suppose l1, . . . , l8 are straight lines, and Q is a
point on the complex projective plane, in general position. One can ask how many
Pappus configurations exist in the plane with Pi ∈ li for i = 1, . . . , 8, and P9 = Q.
(Answer: 5.)

The difficulty in this and other similar questions is that the variety of points rep-
resenting given configurations (embedded in appropriate moduli spaces) is hopeless
to describe with equations. These equations are not only the equations describing
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collinearities of the configuration, but also the geometric theorems valid for that
configurations (in the case of Pappus: various Menelaus, Ceva, Pappus, and maybe
other theorems). In fact, these varieties (named “matroid representation spaces”)
are universal objects in algebraic geometry, in the sense that any complication of
varieties can be modeled on them (Mnëv’s theorem). [Refreshing exceptions are
the so-called Schubert varieties—corresponding to very special configurations—,
whose singularities, hierarchy, and behavior in general, are well understood. The
enumerative questions corresponding to Schubert varieties (Schubert calculus) are
mostly solved at least as outcomes of algorithms. The study of enumerative ques-
tions of matroid representation spaces in general is outside the scope of Schubert
calculus.]

Techniques inspired by Thom polynomial calculations in singularity theory pro-
vide the answer. In a joint work with L. Fehér and A. Némethi we study the fol-
lowing objects. To each subset I of {1, . . . , k} associate an integer r(I). Denote by
X the collection of those n× k matrices for which the rank of a union of columns
corresponding to a subset I is r(I), for all I. The group GL(n) times the group of
diagonal matrices of size k, acting on Cn×k, leaves X invariant. The equivariant
class (“Thom polynomial”) represented by the closure of X encodes the answers
of the enumerative questions discussed above. For example, one of the more than
10,000 terms of the Thom polynomial corresponding to the Pappus configuration
is 5d1d2d3d4d5d6d7d8. The coefficient 5 is the answer to the enumerative problem
of the introduction.

The challenge is the calculation of the equivariant classes of matroid realization
varieties. In general, one knows numerous conditions such a class must satisfy.
One such condition is the so-called interpolation condition. According to this,
the equivariant class must vanish under certain substitutions. These substitutions
come from geometry, they express the restriction of the equivariant class to an
orbit outside the closure of X . In other situations, where the underlying repre-
sentation is “equivariantly perfect”, these substitutions determine the equivariant
class. However, the representation in question is not perfect.

An extra strong condition on these classes which makes them calculable in prac-
tice, is the analogue of the d-stability condition from Section 1, and its corollary,
as follows. After substituting 0 into the Chern classes of the group of diagonal
k × k matrices, the remaining polynomial (in the Chern classes of GL(n)) has
width as most k − r({1, . . . , k}).

References
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Jumping coefficients, spectra and b-functions of hyperplane
arrangements

Morihiko Saito

Recent developments in the theories of jumping coefficients, (singularity) spectra,
and b-functions of hyperplane arrangements are explained. Some part is done by
joint work with A. Dimca and N. Budur.

Those invariants associated with hypersurface singularities are known by the
difficulty of their explicit calculations. In the case of hyperplane arrangements,
the first problem is whether they combinatorial invariants. We show that the
jumping coefficients and the spectrum are determined by certain combinatorial
data. In case the rank (i.e. the dimension of the ambient space) is small, we
give explicit formulas in terms of relatively simple combinatorial invariants (like
the numbers of edges with given multiplicities) [BS]. There are too ways for the
proofs. One is by induction on the rank. The other uses the Hirzebruch-Riemann-
Roch theorem together with the combinatorial description of the cohomology ring
of a good compactification of the ambient space [DP]. Note that a formula for
multiplier ideals was obtained by M. Mustaţǎ [Mu] (and has been improved in
[Te]). However, his formula implies that we have to calculate the dimension of
the parameter space of hypersurfaces of a given degree passing through certain
singular points of the arrangement. So the problem is rather nontrivial. Note also
that the above result does not imply an answer to the conjecture that the Milnor
cohomology groups of hyperplane arrangements are combinatorially determined.
This conjecture is recently studied with A. Dimca and N. Budur [BDS]. However,
no known method seems to work, and the conjecture is very difficult.

As for the b-functions, the situation is not so good as in the case of the above
invariants since the calculation is much more difficult. Recently Malgrange’s for-
mula for the b-function of an isolated hypersurface singularity is generalized to
the non-isolated singularity case assuming that the support of the vanishing cycle
sheaf with a given eigenvalue of the Milnor monodromy is isolated [Sa1]. Combin-
ing this with the solution of Aomoto’s conjecture on the combinatorial description
of the cohomology of certain local systems which is due to Esnault, Schechtman,
Terao, Varchenko, and Viehweg ([ESV], [STV]), we can calculate the b-function of
hyperplane arrangements in case the rank is 3 and the degree is small [Sa2]. Note
that the b-function of a generic central hyperplane arrangement was determined
by U. Walther [Wa] except for the multiplicity of the root −1 which is solved in
[Sa1]. (It does not seem easy to determine the multiplicity of −1 without using
the theory of weights on mixed perverse sheaves.) Using these theories, some at-
tempts are now being made with N. Budur and S. Yuzvinsky [BSY] to solve the
topological monodromy conjecture of J. Denef and F. Loeser concerning the poles
of the local topological zeta function and the roots of the b-function. Note that
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the conjecture concerning the Milnor monodromy was settled by [BMT] in the
hyperplane arrangement case. The conjecture for the b-function is now solved in
the reduced case with rank 3. However, the higher rank case and the non-reduced
case seem to be very difficult.
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[BMT] Budur, N., Mustaţă, M. and Teitler, Z., The Monodromy Conjecture for Hyperplane
Arrangements, preprint (arXiv:0906.1991).

[BSY] Budur, N., Saito, M. and Yuzvinsky, S., Monodromy conjecture for reduced hyperplane
arrangements of rank 3 (preprint).

[DP] De Concini, C. and Procesi, C., Wonderful models of subspace arrangements, Selecta Math.
(N.S.) 1 (1995), 459–494.

[ESV] Esnault, H., Schechtman V. and Viehweg, E., Cohomology of local systems on the com-
plement of hyperplanes, Inv. Math. 109 (1992), 557–561.
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General KAM theorems

Mauricio Garay

The aim of this work is to obtain a general analytic KAM theory, by including
it into the general framework of group actions. Already in the simplest cases,
the general KAM theorems show that the non-degeneracy conditions on the fre-
quency are not necessary to ensure the existence of invariant tori, that families
of isochronous tori may be preserved under perturbation, that other invariant
lagrangian varieties than tori can be preserved under perturbations, that degener-
ation of lagrangian invariant manifolds may occur etc. But, let us first recall the
basic setting of hamiltonian mechanics.

Let U be an open subset of T ∗Rn = Rn × Rn with coordinates q1, . . . , qn,
p1, . . . , pn. The symplectic form ω =

∑n
i=1 dqi ∧ dpi induces a Poisson bracket in

T ∗Rn defined by

{f, g}ωn = df ∧ dg ∧ ωn−1,
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An analytic function H : U −→ R defines an hamiltonian dynamical system given
by Hamilton’s equations :

{
q̇i = −∂pi

H = {H, qi},
ṗi = ∂qiH = {H, pi}

The function H is called the hamiltonian function of the dynamical system.
This dynamical system is called Liouville-integrable or simply integrable if there

exists analytic functions f1, . . . , fn with commuting hamiltonian vector fields which
generate at each point the tangent spaces to the fibres of the moment map :

f = (f1, . . . , fn) : U −→ Rn.

In such a case, the flows of the hamiltonian vector fields of the f ′
i ’s define an affine

structure on the fibres of f .
In general, the solution of Hamilton’s equation might exhibit a complicated

behaviour. The case of integrable systems is, as a general rule, simple. For in-
stance, if the moment map is proper then Arnold-Liouville’s theorem (also called
Arnold-Liouville-Mineur’s theorem) states that these fibres are tori and that the
dynamic is linear in the local coordinates induced by the hamiltonian flows of the
fi’s [1, 3, 4]. Such a motion is called quasi-periodic, it is fully determined by the
vector giving the direction of the trajectories in these affine coordinates. This
vector is called the frequency vector. If we multiply the frequency vector by a con-
stant then the trajectory do not change, therefore as long as we are not interested
in the parametrisation of the trajectories, the motion is determined by the point
in projective space RPn−1 corresponding to the frequency vector. This point is
called the frequency on the given torus.

Consider the following example, consisting of two harmonic oscillators with no
interaction :

H =
1

2
(p21 + q21) +

√
2

2
(p22 + q22), fi = p2i + q2i .

On every smooth fibre of f = (f1, f2), the motion is quasi-periodic with frequency

(1 :
√
2) ∈ RP 1. All trajectories are dense in each torus. If we consider now the

motion corresponding to the hamiltonian

H ′ =
1

2
(p21 + q21) +

√
2

2
(p22 + q22) +

1

2
(p21 + q21)

2 +
1

2
(p22 + q22)

2

then the frequency changes accordingly with the torus. If the frequency defines
a rational point in RP 1 then each trajectories is periodic on the corresponding
torus, otherwise each one is dense.

The dynamics of an integrable system defined by a proper moment mapping
being governed by quasi-periodic motions, is something elementary. Poincaré ob-
served that this is not a generic motion : if we perturb it slightly, then the dynamics
usually becomes chaotic...

In 1954, Kolmogorov observed that although some quasi-periodic motions may
disappear under perturbation, there are some tori on which the motion might
be preserved. The proof of Kolmogorov’s theorem was completed by Moser in
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1962 and Arnold in 1963. The theorem was called by the acronym KAM theorem
although Arnold always referred to it as Kolmogorov’s theorem.

The KAM theorem applies only for motions on a torus satisfying two conditions.
First, the frequency should be diophantine, which roughly means (for n = 2) that
it is badly approximated by rational points. The second condition is that the map
which assigns to each torus its frequency should be smooth. For instance, KAM
theorems says nothing concerning our first example. Nevertheless using general
KAM theorem one can easily prove that ... any deformation Ht of H admits a
family of invariant tori Lt = {ft = 0} provided that t is small enough. The values
of t for which the theorem holds do depend on the perturbation. A deeper study
shows that the phase space is separated between zones of conflict, on one part the
quiet KAM zone with his quasi-periodic motions, on the other side a turbulence
zone, but let us return to invariant tori...

The KAM theorem is a theorem on group actions. In Kolmogorov’s situation,
one searches a symplectomorphism ϕt which sends the perturbed hamiltonian Ht

to a hamiltonian H ′ whose restriction to the diophantine torus defines the same
dynamics as the original one. This can be stated in algebraic terms. If I is the
ideal of the lagrangian torus, we search a symplectomorphism ϕt such that ϕt(Ht)
is equal to H modulo I2. In the space of hamiltonians, we are trying to prove that
I2 is a transversal to the action of the group of symplectomorphisms on functions.

Therefore, one has to work out a theory for group actions in infinite dimensional
spaces, the spaces involved in this study being neither Banach nor Fréchet spaces.

This theory is build up from the classical notion of Banach scale. A Banach
scale consists of an increasing family of Banach spaces (Es), s ∈]0, 1[ such that
the inclusions have norm at most one. The space of holomorphic function germs
along a compact admits various Banach scales. A vector space on which we have
fix such a scale is called a scaled vector space.

In [2], J. Féjoz and myself proved a theorem for group actions on scaled vector
space. This result gives sufficient conditions to ensure that there is no differ-
ence between locally homogeneous spaces and infinitesimally locally homogeneous
spaces. Although this theorem has a wide range of applications, it does not apply
to the KAM situation. Therefore, one needs to develop a thorough, but elemen-
tary, deformation theory for scaled vector spaces.

In this way, one obtains a theorem for group actions in deformed scaled vector
spaces which implies all sort of theorems in dynamical systems. The general KAM
theorems give sufficient condition under which a deformation of a hamiltonian
function belonging to a lagrangian ideal induces a lagrangian deformation of the
ideal which contains the deformation, and eventually describe the dynamics of the
deformed hamiltonian system.
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premieres uniformes en involution aux systemes a variables separees, J. Math. Pure Appl.
15 (1936), 221-267.

On deformations of plane curve singularities

Maciej Borodzik

Let us consider a germ (C, z0) of a plane curve singularity. Let (U,E) −→ (C, z0)
be its minimal embedded resolution, where E is the exceptional divisor. Let K
be the canonical divisor on U and C′ the strict transform. Let D = C′ + Ered,
where “red” means that we take reduced scheme structure, i.e. all coefficients are
1. Finally, let

K +D = H +N

be the Zariski–Fujita decomposition of K +D.

Definition 1. (see [BZ]) The M number of the singular point z0 is K(K +D).
A fine M number is K(K +D) +N2.

The M number is strongly related to the parametric form of the singularity.
Namely, it is the codimension of the equisingularity stratum in a suitably defined
parameter space. Therefore it is natural to ask the following question.

Question 2. Is the M number upper-semicontinuous in deformations of plane
curve singularities?

The answer is obviously no, if we do not assume that the (local) geometric genus
of members of deformation’s family is fixed, or, equivalently, the deformation is
not δ-constant.

Therefore we reformulate the above question adding an assumption

Question 3. Is the M number upper-semicontinuous in δ−constant deformations
of plane curve singularities?

We can approach to this problem via knot-theoretic invariants of links of sin-
gular points. We recall one definition.

Definition 4. Let L be a link in S3 and S its Seifert matrix. The Tristram–
Levine signature of L is a function σL(·) that associates with a complex number
z of modulus 1 a signature of the Hermitian form

(1 − z)S + (1 − z̄)ST .

The Tristram–Levine signature is computable for iterated torus knots (see
[Bo2]). In particular we have

0Supported by Polish MNiSz Grant N N201 397937. The author is also supported by Foun-
dation for Polish Science (FNP)
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Proposition 5 (see [Bo2]). Let C be a germ of a plane curve singularity with one
branch. Let L be the corresponding link of singularity, and µ, M respectively the
Milnor number and the M number of the singular point. Then

(1) 0 < −3
∫ 1

0

σL(e
2πix)− µ−M <

2

9
.

We want to apply the above result in studying deformations. So let us assume
that we are given a family {Cs}s∈D of singular plane curves (D is a unit disk in the
complex plane) such that there exists a small ball B ∈ C2 that Cs ⊂ B, ∂Cs ⊂ ∂B
and Cs is transverse to ∂B for all s.

Assume moreover that C0 has one singular point z0 and ∂B ∩C0 is isotopic to
the link L0 of C0 at z0. Let us pick some s 6= 0 and look at singularities of Cs.
Let z1, . . . , zN be the singular points of Cs and L1, . . . , LN corresponding links
of singularities. The Tristram–Levine signatures of links L0 and L1, . . . , LN are
related by the following Murasugi-like inequality.

Proposition 6. (see [Bo, Bo3]) For almost all ζ ∈ S1 we have

(2)

∣∣∣∣∣σL0
(ζ) −

N∑

k=1

σLk
(ζ)

∣∣∣∣∣ ≤ b1(Cs).

We want to integrate the above inequality and make use of the estimate (1).
However, this inequality holds only for cuspidal singularities. Therefore we add
an assumption

Assumption 7. There exists an n ≤ N such that the singular points z1, . . . , zn
are cuspidal and the remaining R = N − n singular points are ordinary double
points.

An ordinary double point has σ ≡ −1, so in this case we can rewrite (2) as

−
n∑

k=1

σLk
+ σL0

≤ 2g,

where g is the geometric genus of Cs (because of our assumptions b1(Cs) = 2g+R).
Then, applying (1) and manipulating with formulae we arrive finally at

Theorem 8. If in the deformation as above, Cs has only double points and cus-
pidal singularities, then

(3)

n∑

k=1

Mk −M0 < 8g + 2R+
2

9
.

Here Mk and M0 are corresponding M numbers of singularities.

We would expect that the right hand side of (3) is like 2g, but the method
applied here seems to be insufficient to prove that strong result.
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The δ-constant stratum in the discriminant

Paul Cadman

(joint work with David Mond)

Let f : (C2, 0) −→ (C, 0) be a holomorphic germ with an isolated singularity at 0 of
Milnor number µ. Let F : B×Λ −→ U be a representative of a versal deformation
of f where B ⊂ C2,Λ ⊂ Cµ, U ⊂ C are neighbourhoods of the origin in their
respective spaces chosen so that F has the required transversality properties and
let (λ1, . . . , λµ) be coordinates for Λ.

We study the geometry of the discriminant:

D := {λ ∈ Λ : Xλ := F−1
λ (0) is singular}

Using the δ-invariant for plane curves we define the following strata in the dis-
criminant:

Dk := {λ ∈ Λ : δ(Xλ) ≤ k}
Let δ := δ(X0) then we call Dδ the δ-constant stratum of the discriminant.

There is a intersection pairing in H1(Xλ;C) coming from the topological inter-
section of cycles on the curve Xλ. In [1] Givental and Varchenko show that when
f is irreducible (so the intersection pairing is nondegenerate and µ is even) the
intersection pairing can be used to define a symplectic form Ω on Λ. Moreover,
they show that Ω identifies the stratum Dδ as a Lagrangian subvariety of Λ. In
[2] Givental also shows that Dδ is Cohen-Macaulay for A2k singularities.

Assume Ω =
∑µ

i,j=1 gijdλi∧dλj where gij ∈ OCµ We use Ω to construct a rank
2 maximal Cohen-Macaulay module on the discriminant. To do this we define a
skew-symmetric matrix G = (gij) from the coefficients of Ω. Then we define the
matrix χ by setting its columns to be the coefficients of the vector fields χi . . . χµ

that make up a basis of Der(− log(D)), the logarithmic vector fields tangent to
the discriminant.

We view the matrix S := χtGχ as a presentation matrix for the module MΩ:

O
µ
Cµ

S
// O

µ
Cµ

// MΩ
// 0

We remark that the ijth entry of S is equal to Ω(χi, χj). The vector fields χi are
tangent to Dδ which is Lagrangian so Ω(χi, χj) is a function vanishing on Dδ. In
fact, this collection of functions define Dδ.
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This remark motivates the definition of the following varieties obtained from
the presentation matrix of MΩ:

R2m := V (Fµ−2(m+1)(MΩ)) = V (Pf2(m+1)(S)) m = 0, . . . , δ − 1

where Fµ−2(m+1)(MΩ) is the (µ−2(m+1))th Fitting ideal ofMΩ and Pf2(m+1)(S)
is the ideal of Pfaffians of 2(m+ 1)× 2(m+ 1) symmetrically placed submatrices
of S.

The varieties R2m are strata in the discriminant where the intersection pairing
in H1(Xλ;C) has rank less than or equal to 2m. We show that the rank of the
intersection pairing determines the genus of the normalisation of the curve and
hence its δ-invariant.

Let n : Xλ −→ Xλ be the normalisation of the curve Xλ. Since Xλ has isolated
singularities we can recover it as a quotient of its normalisation Xλ ≃ Xλ/S which
glues together on Xλ the preimage under n of singular points of Xλ. We can show
that the intersection pairing IXλ

on H1(Xλ;C) passes to the quotient, i.e.:

IXλ
(a, b) = IXλ

(n∗a, n∗b)

for a, b ∈ H1(Xλ;C). When λ ∈ Dδ the normalisation of Xλ is contractible so IXλ

vanishes on H1(Xλ;C) by the equation above. Since Ω is induced from IXλ
this

demonstrates that Dδ is Lagrangian with respect to Ω. Also, since Xλ is smooth,
it shows that the rank of the intersection pairing on H1(Xλ;C) determines the
genus of Xλ.

By considering the change in first Betti-number between Xλ and Xλ we obtain
the following relation between the δ-invariants of X0 and Xλ:

δ(X0)− δ(Xλ) = g(Xλ)

where g(Xλ) is the genus of Xλ. We deduce that the genus of Xλ determines the
δ-invariant of Xλ.

From these observations we conclude that the stratifications of the discriminant
defined by the rank of Ω and the δ-invariant are the same. The relationship
between the two sets of varieties in each stratification is:

R2m = Dδ−m m = 0, . . . , δ − 1

We can now answer questions about Dk via the more computable Rk. For instance
in the case of E6 and E8 we can show Dδ is Cohen-Macaulay by computing its
depth. This is sufficient to prove that Dδ is a rigid Lagrangian singularity for E6

and E8 by a result of Sevenheck and van Straten in [3].
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Polar Representations and Symplectic Reduction

Christian Lehn

1. Introduction and Statement of the results

A symplectic singularity in the sense of Beauville [1] is a normal variety together
with a symplectic form on its regular part which extends to a regular 2-form on any
resolution. The number of known techniques to produce symplectic singularities
is rather limited. Here we look at polar representations in the sense of Dadok and
Kac [4] and their symplectic reductions. For simple groups the irreducible polar
representation are classified in [4].

Let V be a vector space and G ⊆ GL(V ) be reductive. We consider the sym-
plectic double V ⊕ V ∗ together with the induced symplectic G-action and the
associated moment map µ : V ⊕ V ∗ −→ g∗. The symplectic reduction is defined
by V ⊕ V ∗///G := µ−1(0)//G. In [3] we adress the following

Conjecture 1. (M. Lehn) Let (G, V ) be an irreducible, stable, polar represen-
tation of a simple algebraic group and c ⊆ V a Cartan subspace. Then there is a
subspace c∨ ⊆ V ∗ and an isomorphism of schemes

c⊕ c∨/W −→ V ⊕ V ∗///G,

where W is the Weyl group of (G, V ).

A consequence would be that V ⊕ V ∗///G is an irreducible, normal variety and
moreover symplectic, as c⊕ c∨/W is. For example the adjoint representation of a
semisimple Lie algebra is polar and in that case µ−1(0) = {(x, y) ∈ g⊕ g : [x, y] = 0},
the commuting scheme. By the work of Joseph ([6], Theorem 0.1) we know that
the conjecture is true in that case. In [3] we give a proof of Conjecture 1 under
the additional assumption, that the nullfibre is a normal variety.

Theorem 2. Let (G, V ) be an irreducible, stable, polar representation and c ⊆ V a
Cartan subspace such that µ−1(0) is a normal variety, the inclusion c⊕c∨ ⊆ V ⊕V ∗

induces an isomorphism

c⊕ c∨/W −→ V ⊕ V ∗///G

where c∨ is the Cartan space dual to c (see section 3).

We cannot show the normality of µ−1(0) in general. In the case of the com-
muting scheme this is a long standing conjecture, but at least we know, that it is
irreducible by the work of Richardson [9]. We give an irreducibility criterion in
the general case.

Theorem 3. The nullfibre µ−1(0) is irreducible if and only if for every (v, ϕ) ∈
µ−1(0) with closed orbit both G.v and G.ϕ are closed in V and V ∗.

By a casewise analysis we obtain

Proposition 4. Conjecture 1 is true if (G, V ) is one of the following: (SL2, S
3C2),

(SL3, S
3C3), (SOn,C

n), (G, g).
The nullfibre is irreducible, if (G, V ) is (SLn,Λ

2Cn), n = 2k or (SLn, S
2Cn).
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2. Framework

As we rely on [4], we give a brief overview of its concepts and results. If not
stated otherwise, all results given here are due to Dadok and Kac.

A vector v ∈ V is called semisimple, if its orbit is closed. The representation
is called stable, if there is a closed orbit among the orbits of maximal dimension.
A subspace of the form c := cv := {x ∈ V : g.x ⊂ g.v} for semisimple v is called a
Cartan subspace, if dim c = dim V //G. The representation (G, V ) is called polar,
if it admits a Cartan subspace.

If we put N := {g ∈ G : g.c ⊆ c} and H := {g ∈ G : g|c = idc} then W = N/H
is finite and acts faithfully on c. It is called the Weyl group of c. A main property
of polar representations is that the inclusion c ⊆ V of a Cartan subspace induces

an isomorphism C [V ]
G −→ C [c]

W
. The proof uses the following Theorem of [5]:

Let G be reductive, X an affine, normal G-variety and Y a closed subvariety of X
such that the following conditions are fulfilled:

(1) Any two G-equivalent points of Y are W -equivalent.
(2) Every closed orbit in X intersects Y non-trivially.
(3) For y ∈ Y the orbit G.y is closed.

Then the restriction C [X ] −→ C [Y ] induces an isomorphism C [X ]G
∼=→ C [Y ]W .

Basically the three conditions say, that the morphism is bijective and then
normality takes care of the scheme structure. An easy example, where our Theorem
applies is given by the representation G = SOn

�

Cn =: V , which is stable
and polar with Cartan space c = C.e1. The Weyl group is W = {±1} ∼= Z/2

and hence C [c⊕ c]W ∼= C [a, b, c] /(ab − c2) is an A1-singularity. The nullfibre
is µ−1(0) = {(x, y) ∈ Cn ⊕ Cn : rk(x|y) ≤ 1}, which is known to be normal, so
Theorem 2 can be applied.

3. Methods

As for a polar representation stability is equivalent to the statement V = c⊕g.c
(see [4]), it is reasonable to look at

c∨ := {ϕ ∈ V ∗ : ϕ(g.c) = 0} ⊆ V ∗,

the Cartan-subspace dual to c. This satisfies c⊕ c∨ ⊆ µ−1(0) so we may hope to
make use of the Theorem of [5] referred to above. We are able to verify conditions
(1) and (2) and if µ−1(0) is irreducible, then a dimension argument also shows
(3). Assuming normality gives Theorem 2. Let us finally illustrate how Theorem
3 may proof irreducibility of µ−1(0) by linear algebra methods:

Example 5. SLn

�

S2Cn

We identify S2Cn with the symmetric n × n-matrices on which SLn acts on

S2Cn ⊕ (S2Cn)∗ by g.(A,B) := (gAgt,
(
g−1

)t
Bg−1). The representation is polar

and stable and the moment map is

µ : S2Cn ⊕
(
S2Cn

)∗ −→ sln, (A,B) 7→ AB − trAB

n
1n,
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where we identified sln with sl
∗
n.

In the decisive case λ := trAB
n = 0 we have AB = BA = 0 for (A,B) ∈

µ−1(0), so by linear algebra we may transform (A,B) into A′ = diag(1r, 0), B
′ =

diag(0, ⋆). Therefore 0 ∈ G.(A,B), since T (t).(A′, B′)
t−→0−→ (0, 0) for T (t) =

diag(tn−r1r, t
−r1n−r). Hence the only closed orbit for λ = 0 is the origin. In

particular µ−1(0) is irreducible due to Theorem 3.

The general proof of normality seems difficult, but in the complete intersection
case a strategy similar to [7], section 3 might work. It is also worthwile to note, that
in the case SL3

�

S3C3 we proved Conjecture 1 thereby providing an equivalent
description of this interesting singularity, cf. [2], [8]. Another related open problem
is, that symplectic reduction does not always lead to a symplectic singularity. Can
we make precise when it does?
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Poincaré series and Coxeter functors for Fuchsian singularities

Wolfgang Ebeling

(joint work with David Ploog)

Let (X, x) be a normal surface singularity with a good C∗-action. Then the coor-
dinate algebra A is a graded C-algebra A = ⊕∞

k=0Ak. We consider the Poincaré
series of this algebra

pA(t) =

∞∑

k=0

dim(Ak) t
k.

Let (g; (α1, β1), . . . , (αr, βr)) be the orbit invariants of (X, x). It is known that

φA(t) := pA(t)ψA(t), where ψA(t) := (1− t)2−r(1 − tα1) · · · (1− tαr ),

is a polynomial. It turns out that this algebraic invariant is related to topological
invariants of the singularity in a rather mysterious way.

If X is a hypersurface and g = 0 (for simplicity) then it was shown in [2] that
the Saito dual of φA(t) is the characteristic polynomial of the monodromy of the
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singularity (X, x). In particular, if φA(t) is self-dual (as for example in the case of
the Kleinian singularities), the polynomial φA(t) is the characteristic polynomial of
the monodromy. If (X, x) is one of the 14 exceptional unimodal singularities then
φA(t) is the characteristic polynomial of the monodromy of the dual singularity
corresponding to Arnold’s strange duality. More generally, we consider a class
of singularities where the polynomial φA(t) is the characteristic polynomial of an
abstract Coxeter element. This is the class of Fuchsian singularities.

A Fuchsian singularity is the affine surface singularity obtained from the tangent
bundle of the upper half plane by taking the quotient by a Fuchsian group of the
first kind and collapsing the zero section. In particular, it has a good C∗-action.
The surface can be compactified in a natural manner, leading to additional cyclic
quotient singularities of type Aµ on the boundary. After resolving the singularities
on the boundary, one gets a star-shaped configuration E of rational (−2)-curves
with a central curve of genus g and self-intersection number 2g − 2.

We denote the abstract lattice corresponding to the dual graph of this con-
figuration by V−. It is the free Z-module generated by the rational (−2)-curves
E1, . . . , En−1 and the central curve E, endowed with the symmetric intersection
form. Let U = Zu+Zw be a unimodular hyperbolic plane and define V0 = V−⊕Zu
and V+ = V− ⊕ U , where ⊕ denotes the orthogonal direct sum. Let τ0 be the
product of the reflections corresponding to E1, . . . , En−1 and the Eichler-Siegel
transformation ψu,E . This transformation is defined by the formula

ψu,E(x) = x+ 〈x, u〉E − 〈x,E〉u − 1

2
〈E,E〉〈x, u〉u for x ∈ V+.

Let τ+ be the product of τ0 and the reflection corresponding to the vector u− w.
Denote by ∆0(t) = det(1 − τ−1

0 t) and ∆+(t) = det(1 − τ−1
+ t) the corresponding

characteristic polynomials. Then we have:

Theorem 1. For a Fuchsian singularity one has

ψA(t) = ∆0(t), φA(t) = ∆+(t).

This result was already proved in [3]. In the case g = 0, this theorem also follows
from results of H. Lenzing and J. A. de la Peña (see [6]). We give a geometric
proof of this result for the case g = 0 in [4] and for the general case in [5].

We give a geometric interpretation of the lattices V0 and V+ and the isometries
τ0 and τ+ in the case when the singularity (X, x) is negatively smoothable. Then
the compactification of the generic fibre of such a smoothing is (after resolving the
singularities at the boundary) a smooth K3 surface Y containing the configuration
E.

Let Coh(Y ) be the abelian category of coherent sheaves on Y and K(Y ) its
Grothendieck K-group. Let N(Y ) be the numerical K-group which is obtained
from K(Y ) by dividing out the radical of the Euler form. Denote by CohE(Y ) the
abelian subcategory of Coh(Y ) consisting of sheaves whose support is contained
in E and let KE(Y ) be its K-group. Then the lattice V0 can be identified with the
image NE(Y ) of KE(Y ) under the map K(Y ) −→ N(Y ) and the lattice V+ with
the orthogonal direct sum NE(Y )⊕ Z[OY ].
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We consider the bounded derived category of coherent sheaves on Y , Db(Y ).
Moreover, we consider the full triangulated category D0 := Db

E
(Y ) consisting of

complexes whose support is contained in E. This is a 2-Calabi-Yau triangulated
category. We also consider the smallest full triangulated subcategory D+ of Db(Y )
containing D0 and the structure sheaf OY of Y . Now reflections of the (numer-
ical) K-group of Db(Y ) lift to spherical twist functors (autoequivalences) of this
category. The Eichler-Siegel transformations lift to line bundle twists. In this way
one can lift the Coxeter elements τ0 and τ+ to autoequivalences of D0 and D+

respectively. For more details see [5].
The Fuchsian singularities are the Gorenstein normal surface singularities with

a good C∗-action with Gorenstein parameter R = 1. We also consider some sin-
gularities with Gorenstein parameter R 6= ±1, namely the 14 exceptional bimodal
hypersurface singularities. There is a mirror symmetry between these singularities
and some other singularities given by the construction of Berglund and Hübsch
[1], i.e. by ”transposing” the equation (see Table 1).

Name µ R f f t Rt µt Dual
E18 18 2 x5z + y3 + z2 x5 + y3 + xz2 1 12 Q12

E19 19 3 x7y + y3 + z2 x7 + xy3 + z2 1 15 Z1,0

E20 20 5 x11 + y3 + z2 x11 + y3 + z2 5 20 E20

Z17 17 2 x4z + xy3 + z2 x4y + y3 + xz2 1 14 Q2,0

Z18 18 3 x6y + xy3 + z2 x6y + xy3 + z2 3 18 Z18

Z19 19 5 x9 + xy3 + z2 x9y + y3 + z2 5 25 E25

Q16 16 2 x4z + y3 + xz2 x4z + y3 + xz2 2 16 Q16

Q17 17 3 x5y + y3 + xz2 x5z + xy3 + z2 1 21 Z2,0

Q18 18 5 x8 + y3 + xz2 x8z + y3 + z2 5 30 E30

W17 17 2 x5y + z2 + y2z x5 + xz2 + y2z 1 14 S1,0

W18 18 3 x7 + y2z + z2 x7 + y2 + yz2 3 18 W18

S16 16 2 x4y + xz2 + y2z x4y + xz2 + y2z 2 16 S16

S17 17 3 x6 + xz2 + y2z x6y + z2 + y2z 1 21 X2,0

U16 16 2 x5 + y2z + yz2 x5 + y2z + yz2 2 16 U16

Table 1. Mirror symmetry of the exceptional bimodal singularities

In this case the polynomial φA(t) of an exceptional bimodal singularity is the

characteristic polynomial of an operator τ such that τR/Rt

is the monodromy of
the dual singularity. This is work in progress.
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From jet schemes to the base scheme – Isomorphism problems (global
and local)

Shihoko Ishii

Let k be an algebraically closed field of arbitrary characteristic. To a k-scheme X
we associate the m-jet scheme Xm for everym ∈ N. These schemes are somethings
to represent the nature of the geometric properties of the base scheme X . It is well
known that if a morphism f : X −→ Y of the base schemes is isomorphic, then the
induced morphism fm : Xm −→ Ym is also isomorphic for every m ∈ N. Similarly,
if a morphism f : (X, x) −→ (Y, y) of the germs of the base schemes is isomorphic,
then the induced morphism fm : Xm(x) −→ Ym(y) of local m-jet schemes is also
isomorphic for every m ∈ N. Here, we think of the opposite implications, i.e.:

Does an isomorphism of the jet schemes induce an isomorphism of the base
schemes?

1. Global isomorphism problem

This part is a joint work with Jörg Winkelmann. There are two possible for-
mulation for this problem. The first one is a weaker version.

Question 1. If a morphism f : X −→ Y is given and the induced morphism
fm : Xm −→ Ym is isomorphic for every m ∈ N, then is f isomorphic?

The answer to this question is “YES” and the statement is rather stronger, i.e.:

Proposition 1. If a morphism f : X −→ Y is given and the induced morphism
fm : Xm −→ Ym is isomorphic for some m ∈ N, then f is isomorphic.

Next question is a stronger version.

Question 2. If there is an isomorphism ϕ(m) : Xm−̃→Ym for every m ∈ N com-
patible with the truncation morphisms, then is there an isomorphism f : X−̃→Y ,
preferably with the property that ϕ(m) = fm?

The answer to this question is “NO”, even in case we do not require the property
ϕ(m) = fm.

Example 1. There are non-singular surfaces X,Y with X 6≃ Y but Xm ≃ Ym for
every m ∈ N with the compatibility with the truncation morphism. Concretely,
X and Y are hypersurfaces in C3 defined by xz− y2+1 = 0 and x2z− y2+1 = 0,
respectively. This is Danielewski’s counterexample of cancellation.
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2. Local isomorphism problem

This part is a joint work with Tommaso De Fernex and Lawrence Ein. Let
x ∈ X be a closed point of a k-scheme X . Let Xm(x) be the scheme theoretic
fiber of x by the canonical projection πm : Xm −→ X .

Question 3. If a morphism f : (X, x) −→ (Y, y) of the germ of the base schemes
is given and the induced morphism fm : Xm(x) −→ Ym(y) is isomorphic for every
m ∈ N, then is f isomorphic?

In general, the answer is “NO”. There is a counter example for non-Noetherian
Y . But at this moment the answer is not known for Noetherian case.

In order to study the Noetherian case, we introduce a new notion of “closure”
of ideals. Let A be a Noetherian regular local k-algebra and a ⊂ A an ideal. Let
X = SpecA/a and 0 ∈ X be the closed point. For an element f ∈ A, let H be the
hypersurface in SpecA defined by f = 0. Let

am = {f ∈ A | Xm(0) ⊂ Hm(0)}, and
=
a :=

⋂

m∈N

am.

Then, we have the following:

Proposition 2.
=
a is an ideal of A and a ⊂ =

a ⊂ a, where a is the integral closure of
a.

As
=

(
=
a) =

=
a, the ideal

=
a is another kind of “closure” of the ideal a. Question 3

is translated into the following question:

Question 4. For every ideal a of A, does the equality a =
=
a hold?

At this moment we have a =
=
a in case that a is reduced, or principal or generated

by homogeneous elements. Unfortunately, the final answer to this question for
Noetherian case is not yet obtained, but both answers, affirmative or negative,
will provide us with a good news. If the answer is yes, then the local isomorphism
problem is affirmatively solved. If the answer is no, then we have another non-
trivial closure of ideals and a new theory may be developed.

Homological Mirror Symmetry for Cusp Singularities

Atsushi Takahashi

1. Statement and the result

We associate two triangulated categories to a triple A := (α1, α2, α3) of positive
integers called a signature: the bounded derived category Dbcoh(XA) of coherent
sheaves on a weighted projective line XA := P1

α1,α2,α3
and the bounded derived

category DbFuk→(fA) of the directed Fukaya category for a “cusp singularity”
fA := xα1 + yα2 + zα3 − q−1xyz, (q ∈ C∗). Here, we consider fA as a tame
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polynomial if χA := 1/α1 + 1/α2 + 1/α3 − 1 > 0 and as a germ of a holomorphic
function if χA ≤ 0.

Then, the Homological Mirror Symmetry (HMS) conjecture for cusp singulari-
ties can be formulated as follows:

Conjecture 1 ([T1]). There should exist an equivalence of triangulated categories

Dbcoh(XA) ≃ DbFuk→(fA).

�

Combining results in [GL] with known results in singularity theory, one can
easily see that the HMS conjecture holds at the Grothendieck group level, i.e.,
there is an isomorphism

(K0(D
bcoh(XA)), χ+ tχ) ≃ (H2(YA,Z),−I),

where YA denotes the Milnor fiber of fA.
The HMS conjecture is shown if α3 = 1 (Auroux-Katzarkov-Orlov [AKO], Seidel

[Se1], van Straten, Ueda, . . . ). Also the cases A = (3, 3, 3), (4, 4, 2), (6, 3, 2), which
correspond to two of three simple elliptic hypersurface singularities, are known
([AKO], [U], [T2], . . . ).

The following is our main theorem:

Theorem 3. Assume that α3 = 2. Then the HMS conjecture holds. �

The keys in our proof are; the reduction of surface singularities to curve singu-
larities (the stable equivalence of Fukaya categories given in [Se2] section 17), the
use of A’Campo’s divide [A1][A2] in order to describe the Fukaya category, and
mutations of exceptional collections (distinguished basis of vanishing Lagrangian
cycles). We shall give quivers with relations associated to cusp singularities with
α3 = 2 obtained from devides attached to them.

2. Devides and quivers with relations

2.1. A recipe. First, we consider a curve singularity f̃ which is stable equivalent
to the surface singularity f . Then, the following statement holds:

Proposition 2. There exists a distinguished basis of vanishing cycles L1, . . . ,Lµ

in the Milnor fiber of f̃ and a choice of gradings on Li such that Fuk→(Li,Lj)
is at most one dimensional complex concentrated on degree 0. Hence, there ex-
ists a quiver ∆ and relations I by Gabriel’s theorem such that DbFuk→(f) ≃
DbFuk→(f̃) ≃ Db(mod-C~∆/I).

The quiver ∆ and relations I in the above proposition can be described as
follows:

(1) Choose a real Morsification g of f̃ .
(2) Draw a picture of g−1(0) in R2.
(3) Put a vertex • to ODP.
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(4) Put a vertex with a sign ⊕ (⊖) into each compact connected component
of R2\g−1(0) if g is positive (resp. negative) on the component.

(5) Draw 1 arrow −→ from ⊕ to • (from • to ⊖) if • is on the boundary of
the component for ⊕ (resp. ⊖).

(6) Draw 1 dotted line from ⊕ to ⊖ if there are 2 paths from ⊕ to ⊖, which
means a commutative relation between them.

Note that the pair (∆, I) depends on the choice of a real Morsification of g. How-

ever, it is known that the derived category Db(mod-C~∆/I), as a triangulated

category, is an invariant of the singularity f̃ (and hence f). Indeed, two diffenrent
choices of pairs (∆, I) and (∆′, I ′) are connected by a sequence of mutations, the
braid group action on the set of distinguished basis of vanishing cycles.
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Cohen-Macaulay modules over non-isolated singularities

Igor Burban

(joint work with Yuriy Drozd)

The theory of Cohen-Macaulay modules over the quotient surface singularities was
intensively studied in 80-th. As an application, it provides a conceptual explana-
tion of the McKay correspondence in two-dimensional case, see [10, 1, 3, 8, 9] and
[13, 5].

In the PhD thesis of Kahn [11], the geometric McKay correspondence was ex-
tended to the case of the minimally elliptic singularities. Using Atiyah’s classifi-
cation of vector bundles on elliptic curves [2], he described all Cohen-Macaulay
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modules over the simply elliptic singularities. Later, Drozd and Greuel generalized
his approach on the case of the cusp singularities, see [6] and [7].

For a long time it was believed that the log-canonical surface singularities ex-
haust all the cases, where the problem of classifying of all Cohen-Macaulay modules
is representation-tame. However, in my talk I am going to show that in the case
of non-isolated surface singularities called degenerate cusps, all Cohen-Macaulay
modules can be classified in a very explicit way. The rings kJx, y, zK/xyz and
kJx, y, u, vK/(xy, uv) are examples of degenerate cusps.

We have also discovered a wide class of non-isolated surface singularities, whose
category of Cohen-Macaulay modules is representation-discrete (one can view them
as some limiting cases of quotient surface singularities). We show that these sin-
gularities can have arbitrarily many irreducible components, providing a negative
answer to a question posed by F.-O. Schreyer in 1987, see [12]. Our method
allows to get a classification of Cohen-Macaulay modules over the singularities
kJx, y, zK/xy and kJx, y, zK/(x2y − z2) obtained for the first time by Buchweitz,
Greuel and Schreyer in [4], see [5] for more details.
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Monodromy eigenvalues are induced by poles of zeta functions

Wim Veys

1. Let f : X → C be a non-constant analytic function on an open part X of Cn.
We consider C∞ functions ϕ with compact support on X and the corresponding
differential forms ω = ϕdx ∧ dx̄. Here x = (x1, · · · , xn) and dx = dx1 ∧ · · · ∧ dxn.
For such ω the integral

Z(f, ω; s) :=

∫

X

|f(x)|2sω,

where s ∈ C with ℜ(s) > 0, has been the object of intensive study. One verifies
that Z(f, ω; s) is holomorphic in s. Either by resolution of singularities or by
the theory of Bernstein polynomials, one can show that it admits a meromorphic
continuation to C, and that all its poles are among the translates by Z<0 of a
finite number of rational numbers. Combining results of Barlet [4] , Kashiwara [7]
and Malgrange [11], the poles of (the extended) Z(f, ω; s) are strongly linked to
the eigenvalues of (local) monodromy at points of {f = 0}.
Theorem(1) If s0 is a pole of Z(f, ω; s) for some diffential form ω, then
exp(2π

√
−1s0) is a monodromy eigenvalue of f at some point of {f = 0}.

(2) All monodromy eigenvalues of f are obtained this way, that is, if λ is a
monodromy eigenvalue of f at a point of {f = 0}, then there exists a differential
form ω and a pole s0 of Z(f, ω; s) such that λ = exp(2π

√
−1s0).

2. Let now f : X → Qp be a non-constant (Qp-)analytic function on a compact
open X ⊂ Qn

p , where Qp denotes the field of p-adic numbers. Let | · |p and |dx|
denote the p-adic norm and the Haar measure on Qn

p , normalized in the standard
way. The p-adic integral

Zp(f ; s) :=

∫

X

|f(x)|sp|dx|,

again defined for s ∈ C with ℜ(s) > 0, is called the (p-adic) Igusa zeta function
of f . Using resolution of singularities Igusa showed that it is a rational function
of p−s; hence it also admits a meromorphic continuation to C. In this context
the analogue of (1) is an intriguing conjecture of Igusa. More precisely, let f be
a polynomial in n variables over Q. Then we can consider Zp(f ; s) for all prime
numbers p (taking X = Zn

p ).

Monodromy conjecture.For all except a finite number of p, we have that, if s0 is
a pole of Zp(f ; s), then exp(2π

√
−1s0) is a monodromy eigenvalue of f : Cn → C

at a point of {f = 0}.
This conjecture was proved for n = 2 by Loeser [9]. There are by now various
other partial results, e.g. [ACLM1], [2], [8], [10], [13], [16].

But, even assuming the conjecture, in general quite few eigenvalues of f are
obtained this way. (And considering more general zeta functions involving the
p-adic analogues of the C∞ functions ϕ, being just locally constant functions with
compact support, does not yield more possible poles.)
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There are various ‘algebro-geometric’ zeta functions, related to the p-adic Igusa
zeta functions: the motivic, Hodge and topological zeta functions. For those zeta
functions a similar monodromy conjecture can be stated; and analogous partial
results are valid.

Aiming at an analogue of (2) for these p-adic and related algebro-geometric
zeta functions, we rather consider zeta functions associated to f and algebraic or
analytic differential forms ω. (This is natural and useful also in other contexts,
see for example [1], [2], [9], [15].)

3. We concentrate further on the topological zeta function, being the easiest one
to describe. We first state a formula for it in terms of an embedded resolution
π of f−1{0} ∪ divω, which is in fact usually taken as the definition of this zeta
function. From now on f and ω are C-analytic in some neighbourhood of 0 ∈ Cn.

Denote by Ei, i ∈ S, the irreducible components of the inverse image
π−1(f−1{0}∪ divω) and by Ni and νi− 1 the multiplicities of Ei in the divisor of
π∗f and π∗ω, respectively. We put E◦

I := (∩i∈IEi) \ (∪j /∈IEj) for I ⊂ S. So the
E◦

I form a stratification of the resolution space in locally closed subsets.

Definition. The (local) topological zeta function of f and ω (at 0 ∈ Cn) is

Ztop(f, ω; s) :=
∑

I⊂S

χ(E◦
I ∩ π−1{0})

∏

i∈I

1

νi + sNi
,

where s is a variable.

In particular the −νi/Ni, i ∈ S, form a complete list of candidate poles. Typi-
cally however many of them cancel.

This invariant was introduced by Denef and Loeser in [5] for ‘trivial ω’, i.e. for
ω = dx1 ∧ · · · ∧ dxn. Their original proof that this expression does not depend
on the chosen resolution is by describing it as a kind of limit of p-adic Igusa zeta
functions. Later they obtained it as a specialization of the intrinsically defined
motivic zeta functions [6]. Another technique is applying the Weak Factorization
Theorem [3] to compare two different resolutions. For arbitrary ω one can proceed
analogously.

Challenge. Find an ‘intrinsic’ definition of the topological zeta function.

4. We showed in [17] that each eigenvalue of f is induced (as in (2)) by a pole of
the topological zeta function of f and some ω. But typically these zeta functions
have other poles that don’t induce monodromy eigenvalues of f . So for those
zeta functions the analogue of (1) is (unfortunately) not true. It would be really
interesting to have a complete analogue of (1) and (2), roughly saying that the
monodromy eigenvalues of f correspond precisely to the poles of the zeta functions
associated to f and some collection of allowed differential forms ω, including dx.
Of course this would be a lot stronger than the (in arbitrary dimension) still wide
open monodromy conjecture.

For instance when f = yq − xp with gcd(p, q) = 1, a possible collection of such
forms is {xi−1yj−1dx ∧ dy such that p ∤ i and q ∤ j}. The simplicity of this case is
however misleading.
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5. In joint work with A. Némethi we identified such a collection of allowed forms
for an arbitrary f in two variables. More precisely we define allowed differential
forms ω (depending on f) and show that

(i) if s0 is a pole of Ztop(f, ω; s), then exp(2π
√
−1s0) is a monodromy eigenvalue

of f ;
(ii) ω = dx ∧ dy is allowed, and
(iii) all monodromy eigenvalues of f are obtained this way, that is, can be

written as exp(2π
√
−1s0) for some pole s0 of a zeta function Z(f, ω; s) for some

allowed ω.

Our definition of allowed forms uses the Eisenbud-Neumann diagram of (the
minimal embedded resolution) of f , and the natural splicing of this diagram into
star-shaped pieces, yielding a reasonably ‘natural’ proof of (i). Then the point is
that we have enough forms to prove (ii) and (iii). Note that (i) and (ii) provide
an alternative proof of the monodromy conjecture for curves.

Maybe surprisingly, but indicating that our concept of allowed form is ‘good’,
our ideas extend to functions f on some normal surface germs. Note that zeta
functions are also considered in this setting (see for example [14]). More precisely
we can show generalizations of (i), (ii) and (iii) when the Eisenbud-Neumann
diagram of such an f satisfies a semi-group condition like the one for the recently
much studied splice type singularities of Neumann and Wahl (see e.g. [12]).
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Global Singularities and Betti bounds

Dirk Siersma

(joint work with Mihai Tibăr)

We consider polynomial functions f : Cn −→ C. One knows that a general fibre
Xt = f−1(t) has the homotopy type of an (n − 1)-dimensional CW-complex.
Denote for t generic the top Betti number by bn−1(f) := bn−1(Xt).

In this talk we consider the question: “ What kind of restictions are there on
f , depending on this top Betti number ?”

We mention first two important facts about bn−1(f):

1. bn−1(f) is semi-continuous in families [ST2],
2. bn−1(f) is bounded : bn−1(f) ≤ bmax := (d− 1)n. (d = degree of f)

The second fact follows from a deformation to polynomials, which are generic at
infinity (see below).

We will use a description of the polynomials in terms of the boundary singular-
ities in a compactification of the generic fibres. To be more precise, consider Pn

as the (standard) compactification of Cn. Let:

Xt the compactification of Xt in Pn

Xt ∩H its intersection with the hyperplane H = Pn−1 “at infinity”.

At a point P ∈ H we consider the germ (Xt, Xt∩H)P as boundary pair. The (local)
singularity theory of germs of boundary singularities with respect to a hyperplane
has been studied by Arnol’d [Ar1]. He studied the concept of isolated boundary
singularity, its properties, including a classification of simple singularities.

The boundary pair, mentioned above, has an isolated singularity if both Xt and
Xt ∩H have isolated singularities (which includes the case that one of them is is
smooth).

In the isolated case the generic fibre of the polynomial has the homotopy type
of a bouquet of spheres of dimension n − 1 (see e.g Broughton [Br]). Moreover
we have the following formula, which expresses the top Betti number in the Betti
numbers of the boundary singularities

bn−1(f) = (d− 1)n −
∑

P

[µ(Xt, P ) + µ(Xt ∩H,P )],

where µ denotes the Milnor number of a singularity.
The expression µ(Xt, P ) + µ(Xt ∩H,P ) is the so called boundary Milnor number
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at P .
In case that Xt is transversal to the hyperplane H we say, that f is generic at
infinity. In that case we have bn−1(f) = (d− 1)n.

We make the following observations:

Proposition 2. In case bmax − bn−1(f) < d then for all P the boundary pairs have
isolated singularities (or are smooth).

Note that this bound does not depend on n. Moreover it follows, that
∑

P

µ(Xt, P ) + µ(Xt ∩H,P ) < d,

so the sum of the boundary Betti numbers over all singular points P is less than d.
This makes it possible to start a classification of these boundary singularities (see
below). This is also related to Arnold’s [Ar2] theory of singularities of fractions.

The bound in proposition 1 is due to non-isolated boundary singularities.
The first types of (local) singularities one meets after the study of isolated sin-
gulartities are those with a one dimensional singular set. They were intensively
studied. For a survey we refer to [Si3]. For each branch of the singular set one
considers a generic transversal slice in a generic point. The restriction of the func-
tion to the slice has an isolated singularity on an (n− 1)-dimensional space, which
gives a well defined transversal singularity type for this branch of the singular set.

Prototypes of non-isolated singularities are the so-called isolated line singular-
ities [Si1]. Its singular set is a smooth 1-dimensional space and the transversal
type is A1. These singularities have nice topological properties, e.g. the homotopy
type of the Milnor fibre is a bouquet of spheres.

The isolated line singularities (and no other non-isolated singularities !) appear
in the next range of top Betti numbers:

Proposition 3. In case bmax − bn−1(f) < 2d− 1 then for all P the boundary pairs
are as follows:

a. have isolated singularities (or are smooth), or
b. f has isolated line singularities on a straight smooth affine line in Cn, or
c. Xt ∩H has isolated line singularities along a P1 ⊂ Xt ∩H ⊂ H

Consider the set of all singularities with a straight smooth affine line and
transversal type A1. The maximum of bn−1(f) in this class is exactly bmax − d.
This shows that the bound in the proposition 1 is sharp.

The proof of the two propositions uses the semi-continuity of the top Betti
number, during (repeated) deformations of Yomdin type f + swd, where w is a
generic linear map. Each time the dimension of the singular set decreases with one.
Continue until the affine singular set and the singular set at infinity have dimension
less than 1 and at least one of them is exactly 1. Next deform by a Yomdin type
deformation to isolated singularities. Use the formula for series of singularities
[Si2] in order to compute Betti numbers. In that formula occurs the multiplicity
of the singular set and the transversal Milnor numbers. To keep their contribution
minimal one has to consider low multiplicity and low transversal Milnor number.
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Taking the multiplicity 1 and transversal type A1 will give proposition 2. It is well
possible to continue in the same way.

At the end of this note we return to the proposition 1 and list the possible
combinations of critical points at infinity, which give generic fibres with Betti
numbers near to the maximum bmax = (d− 1)n.

Betti boundary type Arnol’d type
bmax < A0|A0 > A0

bmax − 1 < A0|A1 > A1

bmax − 2 < A0|A2 > A2

2 < A0|A1 > 2A1

< A1|A1 > B2

bmax − 3 < A0|A3 > A3

< A0|A2 > + < A0|A1 > A2 +A1

3 < A0|A1 > 3A1

< A1|A2 > C3

< A1|A1 > + < A0|A1 > B2 +A1

< A2|A1 > B3

NB. The notation < X |Y > describes the singularity types of Xt, resp Xt ∩H at
the given singular point at infinity. The additive notation is used if several special
points at infinity play a role. For Arnol’d type fraction notation, cf [Ar2].

Let me mention that this project is a joint research (in progress) with Mihai
Tibăr. Part of the work was done during ‘Research in Pairs’ at the Mathematisches
Forschungsinstitut Oberwolfach.
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